Skip to main content
Log in

Effect of sonochemistry: Li- and Mn-rich layered high specific capacity cathode materials for Li-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Li- and Mn-rich layered Li1.2Ni0.13Co0.13Mn0.54O2 cathode material was synthesized using sonochemical method followed by annealing at 700, 800, and 900 °C for 10 h. The material was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and electrochemical techniques. Its performance as a cathode material for Li-ion batteries was examined. With the sample annealed at 900 °C, an initial specific capacity of 240 mAh g−1 was obtained, which decreased to 215 mAh g−1 after 80 cycles, thus retaining about 90 % of its initial capacity. In contrast, samples annealed at lower temperatures exhibited lower capacity retention upon cycling. Thus, the final annealing temperature was found to have a significant effect on the electrochemical stability of this material in terms of capacity, average voltage, and rate capability. The advantage of this synthesis, which includes a sonochemical stage, compared with a conventional co-precipitation synthesis, was also confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA (2005) Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J Mater Chem 15:2257–2267

    Article  CAS  Google Scholar 

  2. Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17:3112–3125

    Article  CAS  Google Scholar 

  3. Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Hackney SA (2006) Comments on the structural complexity of lithium-rich Li1+x M1-x O2 electrodes (M = Mn, Ni, Co) for lithium batteries. Electrochem Comm 8:1531–1538

    Article  CAS  Google Scholar 

  4. Yu H, Zhou H (2012) Initial Coulombic efficiency improvement of the Li1.2Mn0.567Ni0.166Co0.067O2 lithium-rich material by ruthenium substitution for manganese. J Mater Chem 22:15507–15510

    Article  CAS  Google Scholar 

  5. Amalraj F, Kovacheva D, Talianker M, Zeiri L, Grinblat J, Leifer N, Goobes G, Markovsky B, Aurbach D (2010) Synthesis of Integrated Cathode Materials xLi2MnO3⋅ (1 − x) LiMn1/3Ni1/3Co1/3O2 (x = 0.3, 0.5, 0.7) and Studies of Their Electrochemical Behavior. J Electrochem Soc 157:A1121–A1130

    Article  CAS  Google Scholar 

  6. Li J, Klopsch R, Stan MC, Nowak S, Kunze M, Winter M, Passerini S (2011) Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability. J Power Sources 196:4821–4825

    Article  CAS  Google Scholar 

  7. Amalraj F, Talianker M, Markovsky B, Sharon D, Burlaka L, Shafir G, Zinigrad E, Haik O, Aurbach D, Lampert J, Dobrick MS, Garsuch A (2013) Study of the lithium-rich integrated compound xLi2MnO3·(1-x)LiMO2 (x around 0.5; M = Mn, Ni, Co; 2:2:1) and its electrochemical activity as positive electrode in lithium cells. J Electrochem Soc 160:A324–A337

    Article  CAS  Google Scholar 

  8. Penki TR, Shanmughasundaram D, Jeyaseelan AV, Subramani AK, Munichandraiah N (2014) Polymer template assisted synthesis of porous Li1.2Mn0.53Ni0.13Co0.13O2 as a high capacity and high rate capability positive electrode material. J Electrochem Soc 161:A33–A39

    Article  CAS  Google Scholar 

  9. Nayak PK, Grinblat J, Levi M, Markovsky B, Wu Y, Powell B, Aurbach D (2014) Structural and electrochemical evidence of layered to spinel phase transformation of Li and Mn rich layered cathode materials of the formulae xLi[Li1/3Mn2/3]O2.(1-x)LiMn1/3Ni1/3Co1/3O2 (x = 0.2, 0.4, 0.6) upon cycling. J Electrochem Soc 161:A1534–A1547

    Article  CAS  Google Scholar 

  10. Nayak PK, Grinblat J, Levi M, Aurbach D (2014) Electrochemical and structural characterization of carbon coated Li1.2Mn0.56Ni0.16Co0.08O2 and Li1.2Mn0.6Ni0.2O2 as cathode materials for Li-ion batteries. Electrochim Acta 137:546–556

    Article  CAS  Google Scholar 

  11. Yabuuchi N, Yoshii K, Myung ST, Nakai I, Komaba S (2011) Detailed studies of a high-capacity electrode material for rechargeable batteries Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. J Am Chem Soc 133:4404–4419

    Article  CAS  Google Scholar 

  12. Liu H, Du C, Yin G, Song B, Zuo P, Cheng X, Ma Y, Gao Y (2014) An Li-rich oxide cathode material with mosaic spinel grain and a surface coating for high performance Li-ion batteries. J Mater Chem A 2:15640–15646

    Article  CAS  Google Scholar 

  13. Elia GA, Wang J, Bresser D, Li J, Scrosati B, Passerini S, Hassoun J (2014) A new, high energy Sn−C/Li[Li0.2Ni0.4/3Co0.4/3Mn1.6/3]O2 lithium-ion battery. ACS Appl Mater Interfaces 6:12956–12961

    Article  CAS  Google Scholar 

  14. Wang Z, Liu E, He C, Shi C, Li J, Zhao N (2013) Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries. J Power Sources 236:25–32

    Article  CAS  Google Scholar 

  15. Zheng JM, Wu XB, Yang Y (2011) A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery. Electrochim Acta 56:3071–3078

    Article  CAS  Google Scholar 

  16. Yang S, Huang G, Hu S, Hou X, Huang Y, Yue M, Lei G (2014) Improved electrochemical performance of the Li1.2Ni0.13Co0.13Mn0.54O2 wired by CNT networks for lithium-ion batteries. Mater Lett 118:8–11

    Article  CAS  Google Scholar 

  17. Li Q, Li G, Fu C, Luo D, Fan J, Li L (2014) K+-Doped Li1.2Mn0.54Co0.13Ni0.13O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl Mater Interfaces 6:10330–10341

    Article  CAS  Google Scholar 

  18. Shi SJ, Tu JP, Tang YY, Zhang YQ, Wang XL, Gu CD (2013) Preparation and characterization of macroporous Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion batteries via aerogel template. J Power Sources 240:140–148

    Article  CAS  Google Scholar 

  19. Shi SJ, Tu JP, Tang YY, Liu XY, Zhang YQ, Wang XL, Gu CD (2013) Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method. Electrochim Acta 88:671–679

    Article  CAS  Google Scholar 

  20. West WC, Soler J, Smart MC, Ratnakumar BV, Firdosy S, Ravi V, Anderson MS, Hrbacek J, Lee ES, Manthiram A (2011) Electrochemical behavior of layered solid solution Li2MnO3 − LiMO2 (M = Ni, Mn, Co) Li-ion cathodes with and without alumina coatings. J Electrochem Soc 158:A883–A889

    Article  CAS  Google Scholar 

  21. Li GR, Feng X, Ding Y, Ye SH, Gao XP (2012) AlF3-coated Li(Li0.17Ni0.25Mn0.58)O2 as cathode material for Li-ion batteries. Electrochim Acta 78:308–315

    Article  CAS  Google Scholar 

  22. Amalraj F, Talianker M, Markovsky B, Burlaka L, Leifer N, Goobes G, Erickson EM, Haik O, Grinblat J, Zinigrad E, Aurbach D, Lampert JK, Shin JY, Dobrick MS, Garsuch A (2013) Studies of Li and Mn-rich Lix[MnNiCo]O2 electrodes: electrochemical performance, structure, and the effect of the aluminum fluoride coating. J Electrochem Soc 160:A2220–A2233

    Article  CAS  Google Scholar 

  23. Wang D, Huang Y, Huo Z, Chen L (2013) Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material. Electrochim Acta 107:461–466

    Article  CAS  Google Scholar 

  24. Jina X, Xua Q, Liua H, Yuana X, Xia Y (2014) Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery. Electrochim Acta 136:19–26

    Article  Google Scholar 

  25. Li Z, Chernova NA, Feng J, Upreti S, Omenya F, Whittingham MS (2012) Stability and rate capability of Al substituted lithium-rich high-manganese content oxide materials for Li-ion batteries. J Electrochem Soc 159:A116–A120

    Article  CAS  Google Scholar 

  26. Lee E, Koritala R, Miller DJ, Johnson CS (2015) Aluminum and gallium substitution into 0.5Li2MnO3·0.5Li(Ni0.375Mn0.375Co0.25)O2 layered composite and the voltage fade effect. J Electrochem Soc 162:A322–A329

    Article  CAS  Google Scholar 

  27. Nayak PK, Grinblat J, Levi M, Haik O, Levi E, Aurbach D (2015) Effect of Fe in suppressing the discharge voltage decay of high capacity Li-rich cathodes for Li-ion batteries. J Solid State Electrochem 19:2781–2792

    Article  CAS  Google Scholar 

  28. Nayak PK, Grinblat J, Levi M, Aurbach D (2015) Understanding the effect of lithium bis(oxalato) borate (LiBOB) on the structural and electrochemical aging of Li and Mn rich high capacity Li1.2Ni0.16Mn0.56Co0.08O2 cathodes. J Electrochem Soc 162:A596–A602

    Article  CAS  Google Scholar 

  29. Lv W, Qiu Q, Wang F, Wei S, Liu B, Luo Z (2010) Sonochemical synthesis of cobalt aluminate nanoparticles under various preparation parameters. Ultrason Sonochem 17:793–801

    Article  CAS  Google Scholar 

  30. Malka E, Perelshtein I, Lipovsky A, Shalom Y, Naparstek L, Perkas N, Patick T, Lubart R, Nitzan Y, Banin E, Gedanken A (2013) Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. Small 9:4069–4076

    Article  CAS  Google Scholar 

  31. Friedman H, Reich S, Popovitz-Biro R, von Huth P, Halevy I, Koltypin Y, Gedanken A, Porat Z (2013) Micro- and nano-spheres of low melting point metals and alloys, formed by ultrasonic cavitation. Ultrason Sonochem 20:432–444

    Article  CAS  Google Scholar 

  32. Soltani T, Entezari MH (2013) Sono-synthesis of bismuth ferrite nanoparticles with high photocatalytic activity in degradation of Rhodamine B under solar light irradiation. Chem Engg Journal 223:145–154

    Article  CAS  Google Scholar 

  33. Yuvaraj S, Selvan RK, Kumar VB, Perelshtein I, Gedanken A, Isakkimuthu S, Arumugam S (2014) Sonochemical synthesis, structural, magnetic and grain size dependent electrical properties of NdVO4 nanoparticles. Ultrason Sonochem 21:599–605

    Article  CAS  Google Scholar 

  34. Sivakumar P, Nayak PK, Markovsky B, Aurbach D, Gedanken A (2015) Sonochemical synthesis of LiNi0.5Mn1.5O4 and its electrochemical performance as a cathode material for 5 V Li-ion batteries. Ultrason Sonochem 26:332–339

    Article  CAS  Google Scholar 

  35. Xiang Y, Yin Z, Li X (2014) An improved carbonate precipitation method for the preparation of Li1.2Ni0.12Co0.12Mn0.56O2 cathode material. Ionics 20:163–168

    Article  CAS  Google Scholar 

  36. Xue Y, Wang Z, Yu F, Zhang Y, Yin G (2014) Ethanol-assisted hydrothermal synthesis of LiNi0.5Mn1.5O4 with excellent long-term cyclability at high rate for lithium-ion batteries. J Mater Chem A 2:4185–4191

    Article  CAS  Google Scholar 

  37. Ohayon E, Gedanken A (2010) The application of ultrasound radiation to the synthesis of nanocrystalline metal oxide in a non-aqueous solvent. Ultrason Sonochem 17:173–178

    Article  CAS  Google Scholar 

  38. Som S, Kumar V, Kumar V, Gohain M, Pandey A, Duvenhagea MM, Terblans JJ, Bezuindenhoud BCB, Swart HC (2016) Dopant distribution and influence of sonication temperature on the pure red light emission of mixed oxide phosphor for solid state lighting. Ultrason Sonochem 28:79–89

    Article  CAS  Google Scholar 

  39. Vijayakumar R, Koltypin Y, Felner I, Gedanken A (2000) Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Materials Science Engineering: A 286:101–105

    Article  Google Scholar 

  40. Pinjari DV, Pandit AB (2011) Room temperature synthesis of crystalline CeO2 nanopowder: advantage of sonochemical method over conventional method. Ultrason Sonochem 18:1118–1123

    Article  CAS  Google Scholar 

  41. Liu J, Hou M, Yi J, Guo S, Wang C, Xia Y (2014) Improving the electrochemical performance of layered lithium-rich transition-metal oxides by controlling the structural defects. Energy Environ Sci 7:705–714

    Article  CAS  Google Scholar 

  42. Armstrong AR, Holzapfel M, Novak P, Johnson CS, Kang SH, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc 128:8694–8698

    Article  CAS  Google Scholar 

  43. Chen Y, Chen Z, Xie K (2014) Effect of annealing on the first-cycle performance and reversible capabilities of lithium-rich layered oxide cathodes. J Phys Chem C 118:11505–11511

    Article  CAS  Google Scholar 

Download references

Acknowledgments

P. Sivakumar thanks the Council for Higher Education, the State of Israel, for the PBC scholarship for outstanding postdoctoral researchers from China and India. This work was partially supported by the Israel Science Foundation-ISF, as part of the INREP project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aharon Gedanken.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, P., Nayak, P.K., Grinblat, J. et al. Effect of sonochemistry: Li- and Mn-rich layered high specific capacity cathode materials for Li-ion batteries. J Solid State Electrochem 20, 1683–1695 (2016). https://doi.org/10.1007/s10008-016-3176-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3176-9

Keywords

Navigation