Skip to main content

Advertisement

Log in

Hypergrafted nano-silica modified polymer gel electrolyte for high-performance solid-state supercapacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the developing of wearable electronics and smart textiles, thin, lightweight, and flexible energy storage supercapacitor with high energy density has attracted the attention of many researchers in recent years. In this work, we prepared gel nano-composite electrolyte with the hypergrafted poly (amine-ester) nano-silica (HBPAE-SiO2) as inclusion. The electrochemical properties of the supercapacitor with the alkaline polymer electrolyte were evaluated by cyclic voltammetry, galvanostatic charge–discharge behavior, and electrochemical impedance spectroscopy. It was found that the incorporated HBPAE-SiO2 can greatly increase the specific capacitance of the supercapacitor, which was due to the enhanced ionic conductivity of gel electrolyte as well as good electrode–electrolyte contact. It is pointed out that the electroactivity of the inclusion may be also one reason. The best specific capacitance with 30 wt% HBPAE-SiO2 reached 160 F g−1, which was increased by 36.5 % compared with that of polyvinyl alcohol (PVA)-KOH system. Moreover, the capacity retention of solid-state supercapacitor can be 88 % after 10,000 cycles. The hypergrafted nano-silica modified polymer gel electrolyte is promising for the application of solid-state supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nature Mater 4:366–377

    Article  CAS  Google Scholar 

  2. Hall PJ, Mirzaeian M, Fletcher SI, Sillars FB, Rennie AJ, Shitta-Bey GO, Carter R (2010) Energy Environ Sci 3:1238–1251

    Article  CAS  Google Scholar 

  3. Miller JR, Simon P (2008) Sci Mag 321:651–652

    CAS  Google Scholar 

  4. Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  5. Liu C, Li F, Ma LP, Cheng HM (2010) Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  6. Chen W, Rakhi RB, Hu L, Xie X, Cui Y, Alshareef HN (2011) Nano letters 11:5165–5172

    Article  CAS  Google Scholar 

  7. Mu J, Ma G, Peng H, Li J, Sun K, Lei Z (2013) J Power Sources 242:797–802

    Article  CAS  Google Scholar 

  8. Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Ajayan PM (2007) Proc Natl Acad Sci 104:13574–13577

    Article  CAS  Google Scholar 

  9. Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G (2009) Nano Lett 9:1872–1876

    Article  CAS  Google Scholar 

  10. Zou D, Lv Z, Cai X, Hou S (2012) Nano Energy 1:273–281

    Article  CAS  Google Scholar 

  11. Hu C, Zhao Y, Cheng H, Wang Y, Dong Z, Jiang C, Qu L (2012) Nano Lett 12:5879–5884

    Article  CAS  Google Scholar 

  12. Wu JH, Lan Z, Lin JM, Huang ML, Hao SC, Sato T, Yin S (2007) Adv Mater 19:4006–4011

    Article  CAS  Google Scholar 

  13. Yu H, Wu J, Fan L, Xu K, Zhong X, Lin Y, Lin J (2011) Electrochim Acta 56:6881–6886

    Article  CAS  Google Scholar 

  14. Sivaraman P, Kushwaha RK, Shashidhara K, Hande VR, Thakur AP, Samui AB, Khandpekar MM (2010) Electrochim Acta 55:2451–2456

    Article  CAS  Google Scholar 

  15. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Nat Mater 8:621–629

    Article  CAS  Google Scholar 

  16. Yang X, Zhang F, Zhang L, Zhang T, Huang Y, Chen Y (2013) Adv Funct Mater 23:3353–3360

    Article  CAS  Google Scholar 

  17. Hashmi SA, Latham RJ, Linford RG, Schlindwein WS (1998) Polym Int 47:28–33

    Article  CAS  Google Scholar 

  18. Hashmi SA, Suematsu S, Naoi K (2004) J Power Sources 137:145–151

    Article  CAS  Google Scholar 

  19. Lee KT, Wu NL (2008) J Power Sources 179:430–434

    Article  CAS  Google Scholar 

  20. Yamazaki S, Takegawa A, Kaneko Y, Kadokawa JI, Yamagata M, Ishikawa M (2009) Electrochem Commun 11:68–70

    Article  CAS  Google Scholar 

  21. Yu H, Wu J, Fan L, Lin Y, Xu K, Tang Z, Lan Z (2012) J Power Sources 198:402–407

    Article  CAS  Google Scholar 

  22. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  23. Biswas S, Drzal LT (2010) Chem Mater 22:5667–5671

    Article  CAS  Google Scholar 

  24. Singhal A, Kaur M, Dubey KA, Bhardwaj YK, Jain D, Pillai CGS, Tyagi AK (2012) RSC Adv 2:7180–7189

    Article  CAS  Google Scholar 

  25. Karami H (2010) Int J Electrochem Sci 5:720–730

    CAS  Google Scholar 

  26. Gu G, Zhang Z, Dang H (2004) Appl Surf Sci 221:129–135

    Article  CAS  Google Scholar 

  27. Arlindo EPS, Lucindo JA, Bastos CM, Emmel PD, Orlandi MO (2012) J Phys Chem C 116:12946–12952

    Article  CAS  Google Scholar 

  28. Stefanescu EA, Tan X, Lin Z, Bowler N, Kessler MR (2011) Polymer 52:2016–2024

    Article  CAS  Google Scholar 

  29. Sathish S, Chandar Shekar B, Bhavyasree BT (2013) Adv Mater Res 678:335–342

    Article  Google Scholar 

  30. Seiler M, Köhler D, Arlt W (2003) Sep Purif Technol 30:179–197

    Article  CAS  Google Scholar 

  31. Hawker CJ, Wooley KL, Frechet JM (1993) J Am Chem Soc 115:4375–4376

    Article  CAS  Google Scholar 

  32. Saville PM, White JW, Hawker CJ, Wooley KL, Fréchet JMJ (1993) J Phys Chem 97:293–294

    Article  CAS  Google Scholar 

  33. Newkome GR, Young JK, Baker GR, Potter RL, Audoly L, Cooper D, Johnson CS Jr (1993) Macromolecules 26:2394–2396

    Article  CAS  Google Scholar 

  34. Kim YH, Webster OW (1990) J Am Chem Soc 112:4592–4593

    Article  CAS  Google Scholar 

  35. Hu XL, Hou GM, Zhang MQ, Rong MZ, Ruan WH, Giannelis EP (2012) J Mater Chem 22:18961–18967

    Article  CAS  Google Scholar 

  36. Stöber W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  37. Parpaite T, Otazaghine B, Taguet A, Sonnier R, Caro AS, Lopez-Cuesta JM (2014) Polymer 55:2704–2715

    Article  CAS  Google Scholar 

  38. Huang L, Zhan R, Lu Y (2006) J Reinf Plast Compos 25:1001–1012

    Article  CAS  Google Scholar 

  39. Li Y, Yu J, Guo ZX (2003) Polym Int 52:981–986

    Article  CAS  Google Scholar 

  40. Huang YF, Wu PF, Zhang MQ, Ruan WH, Giannelis EP (2014) Electrochim Acta 132:103–111

    Article  CAS  Google Scholar 

  41. Nohara S, Wada H, Furukawa N, Inoue H, Morita M, Iwakura C (2003) Electrochim Acta 48:749–753

    Article  CAS  Google Scholar 

  42. Novak BM (1993) Adv Mater 5:422–433

    Article  CAS  Google Scholar 

  43. Giannelis EP (1996) Adv Mater 8:29–35

    Article  CAS  Google Scholar 

  44. Berriot J, Montes H, Lequeux F, Long D, Sotta P (2002) Macromolecules 35:9756–9762

    Article  CAS  Google Scholar 

  45. Lan T, Pinnavaia TJ (1994) Chem Mater 6:2216–2219

    Article  CAS  Google Scholar 

  46. Yu G, Hu L, Vosgueritchian M, Wang H, Xie X, McDonough JR, Bao Z (2011) Nano Lett 11:2905–2911

    Article  CAS  Google Scholar 

  47. Masarapu C, Wang LP, Li X, Wei B (2012) Adv Energy Mater 2:546–552

    Article  CAS  Google Scholar 

  48. Lota G, Frackowiak E (2009) Electrochem Commun 11:87–90

    Article  CAS  Google Scholar 

  49. Su LH, Zhang XG, Mi CH, Gao B, Liu Y (2009) Phys Chem Chem Phys 11:2195–2202

    Article  CAS  Google Scholar 

  50. Ma G, Feng E, Sun K, Peng H, Li J, Lei Z (2014) Electrochim Acta 135:461–466

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financially supported from Natural Science Foundation of China (Grant: 51473186, 51173207, U1201243) and the Natural Science Foundation of Guangdong, China (Grants: 2013B010135001, 2012A090100006, 2012B091000065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Hong Ruan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, GM., Huang, YF., Ruan, WH. et al. Hypergrafted nano-silica modified polymer gel electrolyte for high-performance solid-state supercapacitor. J Solid State Electrochem 20, 1903–1911 (2016). https://doi.org/10.1007/s10008-015-3031-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3031-4

Keywords

Navigation