Skip to main content
Log in

A novel electrochemical sensor based on Fe2O3 nanoparticles/N-doped graphene for electrocatalytic oxidation of L-cysteine

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel electrochemical sensor based on Fe2O3 nanoparticles supported on N-doped graphene (Fe2O3NPs/N–GR) has been fabricated for electrocatalytic oxidation and detection of L-cysteine. The Fe2O3NPs/N–GR was characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS), and electrochemical methods. The electrochemical behavior of L-cysteine at Fe2O3NPs/N–GR was investigated by voltammetry. The Fe2O3NPs/N–GR showed a very efficient electrocatalytic activity for the oxidation of L-cysteine in 0.1 M phosphate buffer solution (PBS, pH 7.0). The oxidation peak currents increased dramatically at Fe2O3NPs/N–GR-modified electrode. The potential utility of the sensor was demonstrated by applying it to the analytical determination of L-cysteine. Experimental results showed that the electrocatalytic current increased linearly with L-cysteine concentration in the range of 0.2–400 μM with a lowest detectable concentration of 0.1 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hsiao Y, Su W, Cheng J, Cheng S (2011) Electrochim Acta 56:6887–6895

    Article  CAS  Google Scholar 

  2. Wang WH, Rusin O, Xu XY, Kim KK, Escobedo JO, Fakayode SO, Fletcher KA, Lowry M, Schowalter CM, Law-rence CM, Fronczek FR, Warner IM, Strongin RM (2005) J Am Chem Soc 127:15949–15958

    Article  CAS  Google Scholar 

  3. Liu W, Luo J, Guo YM, Kou J, Li BX, Zhang ZJ (2014) Talanta 120:336–341

    Article  CAS  Google Scholar 

  4. Grazyna C, Elzbieta K, Pawel K, Kamila B, Monika WR, Rafal G (2014) Anal Methods 6:8039–8044

    Article  Google Scholar 

  5. Wang P, Jing XY, Zhang WY, Zhu GY (2001) J Solid State Electrochem 5:369–374

    Article  CAS  Google Scholar 

  6. Chung TK, Funk MA, Baker DH (1990) J Nutr 120:158–165

    CAS  Google Scholar 

  7. Silva CCC, Breitkreitz MC, Santhiago M, Corrêa CC, Kubota LT (2012) Electrochim Acta 71:150–158

    Article  Google Scholar 

  8. Chen SM, Wang CH (2007) J Solid State Electrochem 11:581–591

    Article  CAS  Google Scholar 

  9. Sheng QL, Yu H, Zheng JB (2008) J Solid State Electrochem 12:1077–1084

    Article  CAS  Google Scholar 

  10. Ardakani MM, Talebi A, Naeimi H, Barzoky MN, Taghavinia N (2009) J Solid State Electrochem 13:1433–1440

    Article  CAS  Google Scholar 

  11. Mo ZR, Zhao FQ, Xiao F, Zeng BZ (2010) J Solid State Electrochem 14:1615–1620

    Article  CAS  Google Scholar 

  12. Jin GP, Chen LL, Hang GP, Yang SZ, Wu XJ (2010) J Solid State Electrochem 14:1163–1169

    Article  CAS  Google Scholar 

  13. Perevezentseva DO, Gorchakov EV (2012) J Solid State Electrochem 16:2405–2410

    Article  CAS  Google Scholar 

  14. Meyer JC, Geim AK, Katsnelson MI (2007) Nature 446:60–63

    Article  CAS  Google Scholar 

  15. Soin N, Sinha RS, Sharma S, Thundat T, Mclaughlin JA (2013) J Solid State Electrochem 17:2139–2149

    Article  CAS  Google Scholar 

  16. Zhou CW, Kong J, Yenilmez E, Dai HJ (2000) Science 290:1552–1555

    Article  CAS  Google Scholar 

  17. Liu HD, Zhang JL, Xu DD, Huang LH, Tan SZ, Mai WJ (2015) J Solid State Electrochem 19:135–144

    Article  CAS  Google Scholar 

  18. Luo SP, Chen Y, Xie AJ, Kong Y, Wang B, Yao C (2014) ECS Electrochem Lett 3:B20–B22

    Article  CAS  Google Scholar 

  19. Lv Q, Li G, Lu H, Cai WJ, Huang H, Cheng CY (2015) Micropor Mesopor Mat 203:202–207

    Article  CAS  Google Scholar 

  20. Hao Q, Xu CX, Jia SZ, Zhao XY (2013) Electrochim Acta 113:439–445

    Article  CAS  Google Scholar 

  21. Oka C, Ushimaru K, Horiishi N, Tsuge T, Kitamoto Y (2015) J Magn Magn Mater 381:278–284

    Article  CAS  Google Scholar 

  22. Pileni MP (2003) Nat Mater 2:145–150

    Article  CAS  Google Scholar 

  23. Fu BS, Missaghi MN, Downing CM, Kung MC, Kung HH, Xiao GM (2010) Chem Mater 22:2181–2183

    Article  CAS  Google Scholar 

  24. Son SU, Jang Y, Yoon KY, Kang E, Hyeon T (2004) Nano Lett 4:1147–1151

    Article  CAS  Google Scholar 

  25. Ma ZL, Huang XB, Dou S, Wu JH, Wang SY (2014) J Phys Chem C 118:17231–17239

    Article  CAS  Google Scholar 

  26. Wang D, Li Y, Wang Q, Wang T (2012) J Solid State Electrochem 16:2095–2102

    Article  CAS  Google Scholar 

  27. Wang Y, Zhang H, Yao D, Pu J, Zhang Y, Gao X, Sun Y (2013) J Solid State Electrochem 17:881–887

    Article  CAS  Google Scholar 

  28. Zhang W, Wang L, Zheng X (2014) J Solid State Electrochem 18:2367–2373

    Article  CAS  Google Scholar 

  29. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  30. Han Z, Tang Z, Li P, Yang G, Zheng Q, Yang J (2013) Nanoscale 5:5462–5467

    Article  CAS  Google Scholar 

  31. Su C, Loh KP (2012) Acc Chem Res 46:2275–2285

    Article  Google Scholar 

  32. Daems N, Sheng X, Vankelecom IFJ, Pescarmona PP (2014) J Mater Chem A 2:4085–4110

    Article  CAS  Google Scholar 

  33. Yamashita T, Hayes P (2008) Appl Surf Sci 254:2441–2449

    Article  CAS  Google Scholar 

  34. Mou F, Guan J, Xiao Z, Sun Z, Shi W, Fan XA (2011) J Mater Chem 21:5414–5421

    Article  CAS  Google Scholar 

  35. Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) J Am Chem Soc 123:12798–12801

    Article  CAS  Google Scholar 

  36. Bedioui F, Griveau S, Nyokong T, Appleby AJ, Caro CA, Gulppi M, Ochoa G, Zagal JH (2007) Phys Chem Chem Phys 9:3383–3396

    Article  CAS  Google Scholar 

  37. Ralph TR, Hitchman ML, Millington JP, Walsh FC (1994) J Electroanal Chem 375:1–15

    Article  CAS  Google Scholar 

  38. Recio FJ, Gutierrez CA, Venegas R, Linares-Flores C, Caro CA, Zagal JH (2014) Electrochim Acta 140:482–488

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from Nature Science Foundation of Anyang Normal University and National Natural Science Foundation of China (NSFC, No. 21102005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingbo Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Li, G., Wang, G. et al. A novel electrochemical sensor based on Fe2O3 nanoparticles/N-doped graphene for electrocatalytic oxidation of L-cysteine. J Solid State Electrochem 19, 3613–3620 (2015). https://doi.org/10.1007/s10008-015-2980-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2980-y

Keywords

Navigation