Skip to main content

Advertisement

Log in

Facile one-step process for synthesis of vertically aligned cobalt oxide doped TiO2 nanotube arrays for solar energy conversion

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

An Erratum to this article was published on 14 October 2015

Abstract

Vertically aligned cobalt oxide doped TiO2 nanotube arrays (Co.-oxide TNTAs) were synthesized via one pot-anodic oxidation of pure titanium substrate in the presence of ammonium fluoride and cobalt salt. After subsequent annealing in air the produced arrays were in the tubular structure and doped with Co.-oxide. The designed TNTAs and Co.-oxide TNTAs were tested as photoanode electrodes in a photoelectrochemical cell. Energy dispersive X-ray (EDX) spectroscopy confirms the incorporation of Co. in the doped TNTAs. The Tauc plots estimated from UV–Vis diffuse reflectance spectra displayed that the insertion of the optimum amount of Co.-oxide leads to a decrease in the band gap of TiO2 from 3.2 to 2.9 eV. The influences of various cobalt salt concentrations in the electrolyte solution (5, 10, 15, 20 and 25 mM) on the morphology were studied. The evaluation of the photocurrent and photoconversion efficiency was performed for all the fabricated electrodes. Morphological studies illustrated that the addition of cobalt salt with small concentration has no an obvious effect on the ordered tubular structure of TNTAs, whereas, at higher concentrations the tubular structure was partially collapsed. Co.-oxide enhanced the photoconversion efficiency of TNTA electrode by 30 % at optimum concentration under 110 mW/cm2 solar simulator illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang T, Zhao K, Yu J, Jin J, Qi Y, Li H, Hou X, Liu G (2013) Photocatalytic water splitting for hydrogen generation on cubic, orthorhombic, and tetragonal KNbO3 microcubes. Nanoscale 5:8375–8383

    Article  CAS  Google Scholar 

  2. D’Elia D, Beauger C, Hochepied J, Rigacci A, Berger M, Keller N, Keller-Spitzer V, Suzuki Y, Valmalette J, Benabdesselam M, Achard P (2011) Impact of three different TiO2 morphologies on hydrogen evolution by methanol assisted water splitting: nanoparticles, nanotubes and aerogels. Int J Hydrog Energy 36:14360–14373

    Article  Google Scholar 

  3. Peng R, Banerjee S, Sereda G, Koodali RT (2012) TiO2-SiO2 mixed oxides: organic ligand templated controlled deposition of titania and their photocatalytic activities for hydrogen production. Int J Hydrog Energy 37:17009–17018

    Article  CAS  Google Scholar 

  4. Li C, Yuan J, Han B, Jiang L, Shangguan W (2010) TiO2 nanotubes incorporated with CdS for photocatalytic hydrogen production from splitting water under visible light irradiation. Int J Hydrog Energy 35:7073–7079

    Article  CAS  Google Scholar 

  5. Horiuchi Y, Toyao T, Takeuchi M, Matsuoka M, Anpo M (2013) Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion – from semiconducting TiO2 to MOF/PCP photocatalysts. Phys Chem Chem Phys 15:13243–13253

    Article  CAS  Google Scholar 

  6. Cho S, Jang J, Lee K, Lee JS (2014) Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes. APL Mat 2:010703-010703-14

  7. Adeli B, Taghipour F (2013) A review of synthesis techniques for gallium-zinc oxynitride solar-activated photocatalyst for water splitting. ECS J Solid State Sci Technol 2:Q118–Q126

    Article  CAS  Google Scholar 

  8. Li Y, Yu H, Song W, Li G, Yi B, Shao Z (2011) A novel photoelectrochemical cell with self-organized TiO2 nanotubes as photoanodes for hydrogen generation. Int J Hydrog Energy 36:14374–14380

    Article  CAS  Google Scholar 

  9. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energy Rev 11:401–425

    Article  CAS  Google Scholar 

  10. Hu Y, Kleiman-Shwarsctein A, Forman AJ, Hazen D, Park J, McFarland EW (2008) Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chem Mater 20:3803–3805

    Article  CAS  Google Scholar 

  11. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  12. Ali H, Ismail N, Hegazy A, Mekewi M (2014) A novel photoelectrode from TiO2-WO3 nanoarrays grown on FTO for solar water splitting. Electrochem Acta 150:314–319

    Article  CAS  Google Scholar 

  13. Wang XW, Gao XP, Li GR, Yan TY, Zhu HY (2008) Ferromagnetism of Co-doped titanate and anatase nanorods before and after lithium intercalation. J Phys Chem C 112:5384–5389

    Article  CAS  Google Scholar 

  14. An Y, Li Z, Shen J (2013) The visible light absorption property of Cu-doped hydrogen titanate nanotube thin films: an experimental and theoretical study. Physica B 429:127–132

    Article  CAS  Google Scholar 

  15. Banerjee S, Mohapatra SK, Das PP, Misra M (2008) Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem Mater 20:6784–6791

    Article  CAS  Google Scholar 

  16. Zhang J, Wang Y, Yu C, Shu X, Jiang L, Cui J, Chen Z, Xie T, Wu Y (2014) Enhanced visible-light photoelectrochemical behavior of heterojunction composite with Cu2O nanoparticles-decorated TiO2 nanotube arrays. New J Chem 38:4975–4984

    Article  CAS  Google Scholar 

  17. Chen H, Lin C (2010) Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition. Electrochim Acta 55:7211–7218

    Article  Google Scholar 

  18. Kontos AI, Likodimos V, Stergiopoulos T, Tsoukleris DS, Falaras P (2009) Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles. Chem Mater 21:662–672

    Article  CAS  Google Scholar 

  19. Sarkar D, Ghosh CK, Maiti UN, Chattopadhyay KK (2011) Effect of spin polarization on the optical properties of Co-doped TiO2 thin films. Physica B 406:1429–1435

    Article  CAS  Google Scholar 

  20. Zainullina VM, Korotin MA, Zhukov VP (2010) The effect of oxygen non-stoichiometry and doping with vanadium on the nature of magnetism in titanium dioxide with the anatase structure. Physica B 405:2110–2117

    Article  CAS  Google Scholar 

  21. Hussain ST, Siddiqa A (2011) Iron and chromium doped titanium dioxide nanotubes for the degradation of environmental and industrial pollutants. Int J Environ Sci Tech 8:351–362

    Article  CAS  Google Scholar 

  22. Li Z, Liu J, Wang D, Gao Y, Shen J (2012) Cu2O/Cu/TiO2 nanotube ohmic heterojunction arrays with enhanced photocatalytic hydrogen production activity. Int J Hydrog Energy 37:6431–6437

    Article  CAS  Google Scholar 

  23. Sun M, Fu W, Yang H, Sui Y, Zhao B, Yin G, Li Q, Zhao H, Zou G (2011) One-step synthesis of coaxial Ag/TiO2 nanowire arrays on transparent conducting substrates: enhanced electron collection in dye-sensitized solar cells. Electrochem Commun 13:1324–1327

    Article  CAS  Google Scholar 

  24. Amarjargal A, Tijing LD, Pant HR, Parka C, Kim CS (2012) Simultaneous synthesis of TiO2 microrods in situ decorated with Ag nanoparticles and their bactericidal efficiency. Curr Appl Phys 12:1106–1112

    Article  Google Scholar 

  25. Li J, Chena X, Ai N, Haoc J, Chena Q, Strauf S, Shi Y (2011) Silver nanoparticle doped TiO2 nanofiber dye sensitized solar cells. Chem Phys Lett 514:141–145

    Article  CAS  Google Scholar 

  26. Lai Y, Huang J, Zhang H, Subramaniam V, Tang Y, Gong D, Sundar L, Sun L, Chen Z, Lin C (2010) Nitrogen-doped TiO2 nanotube array films with enhanced photocatalytic activity under various light sources. J Hazard Mater 184:855–863

    Article  CAS  Google Scholar 

  27. Villa K, Black A, Domènech X, Peral J (2012) Nitrogen doped TiO2 for hydrogen production under visible light irradiation. Sol Energy 86:558–566

    Article  CAS  Google Scholar 

  28. Tang J, Wu Y, McFarlandc EW, Stucky GD (2004) Synthesis and photocatalytic properties of highly crystalline and ordered mesoporous TiO2 thin films. Chem Commun 14:1670–1671

    Article  Google Scholar 

  29. Zhang C, Yu H, Li Y, Gao Y, Zhao Y, Song W, Shao Z, Yi B (2013) Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells. ChemSusChem 6:659–666

    Article  CAS  Google Scholar 

  30. Zhao Y, Li Y, Wang C, Wang X, Pan Z, Dong C, Zhou F (2013) Carbon-doped anatase TiO2 nanotube array/glass and its enhanced photocatalytic activity under solar light. Solid State Sci 15:53–59

    Article  CAS  Google Scholar 

  31. Sang L, Zhi-yu Z, Guang-mei B, Chun-xu D, Chong-fang M (2012) A photoelectrochemical investigation of the hydrogen evolving doped TiO2 nanotube arrays electrode. Int J Hydrog Energy 37:854–859

    Article  CAS  Google Scholar 

  32. Vitiello RP, Macak JM, Ghicov A, Tsuchiya H, Dick LFP, Schmuki P (2006) N-doping of anodic TiO2 nanotubes using heat treatment in ammonia. Electrochem Commun 8:544–548

    Article  CAS  Google Scholar 

  33. Wu G, Nishikawa T, Ohtani B, Chen A (2007) Synthesis and characterization of carbon-doped TiO2 nanostructures with enhanced visible light response. Chem Mater 19:4530–4537

    Article  CAS  Google Scholar 

  34. Zhang H, Ji T, Liu Y, Cai J (2008) Preparation and characterization of room temperature ferromagnetic Co-doped anatase TiO2 nanobelts. J Phys Chem C 112:8604–8608

    Article  CAS  Google Scholar 

  35. Santara B, Pal B, Giri PK (2011) Signature of strong ferromagnetism and optical properties of Co doped TiO2 nanoparticles. J Appl Phys 110:114322–114327

    Article  Google Scholar 

  36. Ferreira VC, Nunes MR, Silvestre AJ, Monteiro OC (2013) Synthesis and properties of Co-doped titanate nanotubes and their optical sensitization with methylene blue. Mater Chem Phys 142:355–362

    Article  CAS  Google Scholar 

  37. Hsieh C, Fan W, Chen W, Lin J (2009) Adsorption and visible-light-derived photocatalytic kinetics of organic dye on Co-doped titania nanotubes prepared by hydrothermal synthesis. Sep Purif Technol 67:312–318

    Article  CAS  Google Scholar 

  38. Zhang G, Huang H, Li W, Yu F, Wu H, Zhou L (2012) Enhanced photocatalytic activity of CoO/TiO2 nanotube composite. Electrochim Acta 81:117–122

    Article  CAS  Google Scholar 

  39. Li Y, Yu H, Zhang C, Song W, Li G, Shao Z, Yi B (2013) Effect of water and annealing temperature of anodized TiO2 nanotubes on hydrogen production in photoelectrochemical cell. Electrochim Acta 107:313–319

    Article  CAS  Google Scholar 

  40. Ma J, Yang M, Sun Y, Li C, Li Q, Gao F, Yu F, Chen J (2014) Fabrication of Ag/TiO2 nanotube array with enhanced photo-catalytic degradation of aqueous organic pollutant. Phys E 58:24–29

    Article  CAS  Google Scholar 

  41. Yoong LS, Chong FK, Dutta BK (2009) Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light. Energy 34:1652–1661

    Article  CAS  Google Scholar 

  42. Kuvarega AT, Krause RWM, Mamba BB (2012) Multiwalled carbon nanotubes decorated with nitrogen, palladium co-doped TiO2 (MWCNT/N, Pd co-doped TiO2) for visible light photocatalytic degradation of eosin yellow in water. J Nanoparticle Res 14:776–791

    Article  Google Scholar 

  43. Gomathisankar P, Yamamoto D, Katsumata H, Suzuki T, Kaneco S (2013) Photocatalytic hydrogen production with aid of simultaneous metal deposition using titanium dioxide from aqueous glucose solution. Int J Hydrog Energy 38:5517–5524

    Article  CAS  Google Scholar 

  44. Park JH, Park OO, Kim S (2006) Photoelectrochemical water splitting at titanium dioxide nanotubes coated with tungsten trioxide. Appl Phys Lett 89:163106-163106-3

Download references

Acknowledgments

This work is funded by the Science and Technology Development Fund (STDF) in Egypt as part of the project ID 3649.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, H., Ismail, N., Mekewi, M. et al. Facile one-step process for synthesis of vertically aligned cobalt oxide doped TiO2 nanotube arrays for solar energy conversion. J Solid State Electrochem 19, 3019–3026 (2015). https://doi.org/10.1007/s10008-015-2919-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2919-3

Keywords

Navigation