Skip to main content
Log in

Atmosphere dependence of anode reaction of intermediate temperature steam electrolysis using perovskite type proton conductor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of oxygen partial pressure on anode reaction of steam electrolysis using SrZr0.5Ce0.4Y0.1O3-α (SZCY-541) proton conducting electrolyte was investigated by AC impedance measurement in this work. The anode reaction was enhanced by increasing oxygen partial pressure, and this result was opposite to the expectation from the conventional anode reaction (water splitting reaction). The increase in the electrode reaction conductivity with oxygen chemical potential was proportional to \( {P_{{\mathrm{O}}_2}}^{1/4} \) at 600 °C and at higher oxygen partial pressure region of 700 and 800 °C, suggesting the possibility that the enhancement is caused by the increase in hole concentration on the electrolyte surface near the anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Accorsi R, Bergmann E (1980) Cermet cathodes for high temperature water electrolysis with zirconia cells. J Electrochem Soc 127:804–811

    Article  CAS  Google Scholar 

  2. Badwal SPS, Bevan DJM, Bockris JOM (1980) Electrode kinetics of the evolution and dissolution of oxygen at the urania-zirconia interface. Electrochem Acta 25:1115–1125

    Article  CAS  Google Scholar 

  3. Doenitz W, Schmidberger R, Steinheil E, Streicher R (1980) Hydrogen production by high temperature electrolysis of water vapour. Int J Hydrog Energy 5:55–63

    Article  CAS  Google Scholar 

  4. Iwahara H, Esaka T, Uchida H, Maeda N (1981) Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics 3(4):359–363

    Article  Google Scholar 

  5. Iwahara H, Esaka T, Uchida H, Maeda N (1982) High temperature fuel and steam electrolysis cells using proton conductive solid electrolytes. J Power Sources 7:293–301

    Article  CAS  Google Scholar 

  6. Iwahara H, Uchida H, Maeda N (1983) Studies on solid electrolyte gas cells with high-temperature-type proton conductor and oxide ion conductor. Solid State Ionics 11:109–115

    Article  CAS  Google Scholar 

  7. Iwahara H, Yajima T, Hibino T, Ozaki K, Suzuki H (1993) Proton conduction in calcium, strontium and barium-zirconate. Solid State Ionics 61:65–69

    Article  CAS  Google Scholar 

  8. Iwahara H (1995) Technological challenges in the application of proton conducting ceramics. Solid State Ionics 77:289–298

    Article  CAS  Google Scholar 

  9. Uchida H, Maeda N, Iwahara H (1983) Relation between proton and hole conduction in SrCeO3-based solid electrolytes under water-containing atmospheres at high temperatures. Solid State Ionics 11:117–124

    Article  CAS  Google Scholar 

  10. Sakai T, Matsushita M, Matsumoto H, Okada S, Hashimoto SI, Ishihara T (2009) Intermediate temperature steam electrolysis using strontium zirconate-based protonic conductors. Int J Hydrog Energy 34:56–63

    Article  CAS  Google Scholar 

  11. Sakai T, Matsushita M, Hyodo J, Okuyama Y, Matsuka M, Ishihara T, Matsumoto H (2012) Effect of doped ceria interlayer on cathode performance of the electrochemical cell using proton conducting oxide. Electrochim Acta 75:179–184

    Article  CAS  Google Scholar 

  12. He F, Song D, Peng R, Meng G, Yang S (2010) Electrode performance and analysis of reversible solid oxide fuel cells with proton conducting electrolyte of BaCe0.5Zr0.3Y0.2O3-δ. J Power Sources 195:3359–3364

    Article  CAS  Google Scholar 

  13. Sakai T, Matsumoto H, Yamamoto R, Kudo T, Okada S, Watanabe M, Hashimoto SI, Takamura H, Ishihara T (2009) Performance of palladium electrode for electrochemical hydrogen pump using strontium-zirconate-based proton conductors. Ionics 15:665–670

    Article  CAS  Google Scholar 

  14. Sakai T, Matsumoto H, Kudo T, Yamamoto R, Niwa E, Okada S, Hashimoto SI, Sasaki K, Ishihara T (2008) High performance of electroless-plated platinum electrode for electrochemical hydrogen pumps using strontium-zirconate-based proton conductors. Electrochim Acta 53:8172–8177

    Article  CAS  Google Scholar 

  15. Akoshima S, Oishi M, Yashiro K, Sato K, Mizusaki J (2010) Reaction kinetics on platinum electrode/yttrium-doped barium cerate interface under H2-H2O atmosphere. Solid State Ionics 181:240–248

    Article  CAS  Google Scholar 

  16. Mizusaki J, Amano K, Yamauchi S, Fueki K (1987) Electrode reaction at Pt, O2(g)/stabilized zirconia interface. Part II: electrochemical measurements and analysis. Solid State Ionics 22:323–330

    Article  CAS  Google Scholar 

  17. Kreuer KD (1999) Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ionics 125:285–302

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaaki Sakai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakai, T., Arakawa, K., Ogushi, M. et al. Atmosphere dependence of anode reaction of intermediate temperature steam electrolysis using perovskite type proton conductor. J Solid State Electrochem 19, 1793–1798 (2015). https://doi.org/10.1007/s10008-015-2808-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2808-9

Keywords

Navigation