Skip to main content

Advertisement

Log in

Preparation of lactose-based attapulgite template carbon materials and their electrochemical performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, natural attapulgite was purified by hydrochloric acid washing. Mesoporous carbon materials were prepared by atmospheric pressure impregnation at room temperature using pure attapulgite as a hard template and lactose as a carbon source. Relevant tests were used to determine the morphology and structure of the mesoporous carbon materials. Electrochemical tests were performed to evaluate the electrochemical performance of the materials. Results show that the AT-5M purified attapulgite possessed maximum specific surface area, and the as-prepared carbon materials exhibited partial fasciculus with specific surface area and total pore volume of 593 m2 g−1 and 1.021 cm3 g−1, respectively. The constant current charge/discharge tests showed that the as-prepared carbon materials demonstrated excellent energy storage capacity. When the current density was 625 mA g−1, the specific capacitance reached 180 F g−1. The materials showed quasi-rectangular features of typical cyclic voltammetry curves even at a high scan rate (200 mV s−1), indicating that they possessed excellent rate capacity. AC impedance tests showed that the materials were typical porous electrode materials with combination resistance of 0.525 Ω. The specific capacitance retention rate reached 95.32 % after 1000 constant current charge/discharge cycles, indicating that the materials had superior cyclic stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhao Y, Jiang P (2014) MnO2 nanosheets grown on the ZnO-nanorod-modified carbon fibers for supercapacitor electrode materials. Colloids Surf A: Physicochem Eng Aspects 444:232–239

    Article  CAS  Google Scholar 

  2. Zhao X, Luo H, Du K, Zhang F, Li Y (2014) Application of attapulgite/maltose system on mesoporous carbon material preparation for electrochemical capacitors. J Appl Electrochem 44(6):719–725

    Article  CAS  Google Scholar 

  3. Zhang X, Ran F, Fan H, Tan Y, Zhao L, Li X, Kong L, Kang L (2014) A dandelion-like carbon microsphere/MnO2 nanosheets composite for supercapacitors. J Energy Chem 23(1):82–90

    Article  Google Scholar 

  4. Zhang D, Yan H, Lu Y, Qiu K, Wang C, Tang C, Zhang Y, Cheng C, Luo Y (2014) Hierarchical mesoporous nickel cobaltite nanoneedle/carbon cloth arrays as superior flexible electrodes for supercapacitors. Nanoscale Res Lett 9(1):1–9

    Article  Google Scholar 

  5. Xiao J, Wan L, Yang S, Xiao F, Wang S (2014) Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 14(2):831–838

    Article  CAS  Google Scholar 

  6. Luo Y, Zhang H, Guo D, Ma J, Li Q, Chen L, Wang T (2014) Porous NiCo2O4-reduced graphene oxide (rGO) composite with superior capacitance retention for supercapacitors. Electrochim Acta 132:332–337

    Article  CAS  Google Scholar 

  7. Ma X, Liu M, Gan L, Zhao Y, Chen L (2013) Synthesis of micro- and mesoporous carbon spheres for supercapacitor electrode. J Solid State Electrochem 17(8):2293–2301

    Article  CAS  Google Scholar 

  8. Volfkovich YM, Bograchev DA, Mikhalin AA, Bagotsky VS (2013) Supercapacitor carbon electrodes with high capacitance. J Solid State Electrochem 18(5):1351–1363

    Article  Google Scholar 

  9. Xiao Y, Cao Y, Gong Y, Zhang A, Zhao J, Fang S, Jia D, Li F (2014) Electrolyte and composition effects on the performances of asymmetric supercapacitors constructed with Mn3O4 nanoparticles–graphene nanocomposites. J Power Sources 246:926–933

    Article  CAS  Google Scholar 

  10. Pintor M-J, Jean-Marius C, Jeanne-Rose V, Taberna P-L, Simon P, Gamby J, Gadiou R, Gaspard S (2013) Preparation of activated carbon from Turbinaria turbinata seaweeds and its use as supercapacitor electrode materials. Comptes Rendus Chimie 16(1):73–79

    Article  CAS  Google Scholar 

  11. Ma C, Song Y, Shi J, Zhang D, Zhai X, Zhong M, Guo Q, Liu L (2013) Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes. Carbon 51:290–300

    Article  CAS  Google Scholar 

  12. Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950

    Article  CAS  Google Scholar 

  13. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157(1):11–27

    Article  CAS  Google Scholar 

  14. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23(42):4828–4850

    Article  CAS  Google Scholar 

  15. Gogotsi Y, Presser V (2013) Carbon nanomaterials. CRC Press

  16. Su DS, Centi G (2013) A perspective on carbon materials for future energy application. J Energy Chem 22(2):151–173

    Article  CAS  Google Scholar 

  17. Xia K, Gao Q, Jiang J, Wang H (2013) An unusual method to prepare a highly microporous carbon for hydrogen storage application. Mater Lett 100:227–229

    Article  CAS  Google Scholar 

  18. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Sci 332(6037):1537–1541

    Article  CAS  Google Scholar 

  19. Wu Z-S, Ren W, Wang D-W, Li F, Liu B, Cheng H-M (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842

    Article  CAS  Google Scholar 

  20. Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett 10(3):751–758

    Article  CAS  Google Scholar 

  21. Qie L, Chen W, Xu H, Xiong X, Jiang Y, Zou F, Hu X, Xin Y, Zhang Z, Huang Y (2013) Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ Sci 6(8):2497

    Article  Google Scholar 

  22. Huang K-J, Wang L, Zhang J-Z, Wang L-L, Mo Y-P (2014) One-step preparation of layered molybdenum disulfide/multi-walled carbon nanotube composites for enhanced performance supercapacitor. Energy 67:234–240

    Article  CAS  Google Scholar 

  23. Huang K-J, Zhang J-Z, Xing K (2014) One-step synthesis of layered CuS/multi-walled carbon nanotube nanocomposites for supercapacitor electrode material with ultrahigh specific capacitance. Electrochim Acta 149:28–33

    Article  CAS  Google Scholar 

  24. Bansal RC, Goyal M (2010) Activated carbon adsorption. CRC press

  25. Silvestre-Albero J, Wahby A, Sepúlveda-Escribano A, Martínez-Escandell M, Kaneko K, Rodríguez-Reinoso F (2011) Ultrahigh CO2 adsorption capacity on carbon molecular sieves at room temperature. Chem Commun 47(24):6840–6842

    Article  CAS  Google Scholar 

  26. Xu B, Wu F, Chen R, Cao G, Chen S, Yang Y (2010) Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte. J Power Sources 195(7):2118–2124

    Article  CAS  Google Scholar 

  27. He X, Li R, Han J, Yu M, Wu M (2013) Facile preparation of mesoporous carbons for supercapacitors by one-step microwave-assisted ZnCl2 activation. Mater Lett 94:158–160

    Article  CAS  Google Scholar 

  28. Hu B, Wang K, Wu L, Yu SH, Antonietti M, Titirici MM (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22(7):813–828

    Article  CAS  Google Scholar 

  29. Kyotani T (2000) Control of pore structure in carbon. Carbon 38(2):269–286

    Article  CAS  Google Scholar 

  30. Wu G-P, Yang J, Wang D, Xu R, Amine K, Lu C-X (2014) A novel route for preparing mesoporous carbon aerogels using inorganic templates under ambient drying. Mater Lett 115:1–4

    Article  CAS  Google Scholar 

  31. Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18(16):2073–2094

    Article  CAS  Google Scholar 

  32. Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nat 412(6843):169–172

    Article  CAS  Google Scholar 

  33. Kleitz F, Choi SH, Ryoo R (2003) Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem Commun 17:2136–2137

    Article  Google Scholar 

  34. Sakintuna B, Yürüm Y (2006) Preparation and characterization of mesoporous carbons using a Turkish natural zeolitic template/furfuryl alcohol system. Microporous Mesoporous Mater 93(1–3):304–312

    Article  CAS  Google Scholar 

  35. Wang J, Chen D (2013) Mechanical properties of natural rubber nanocomposites filled with thermally treated attapulgite. J Nanomater 2013:1–11

    Google Scholar 

  36. Chen LF, Liang HW, Lu Y, Cui CH, Yu SH (2011) Synthesis of an attapulgite clay@carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water. Langmuir: ACS J Surf Colloids 27(14):8998–9004

    Article  CAS  Google Scholar 

  37. Haden WL, Schwint IA (1967) Attapulgite: its properties and applications. Ind Eng Chem 59(9):58–69

    Article  CAS  Google Scholar 

  38. Huang J, Liu Y, Wang X (2008) Selective adsorption of tannin from flavonoids by organically modified attapulgite clay. J Hazard Mater 160(2–3):382–387

    Article  CAS  Google Scholar 

  39. Wang H-y, Zhang L-l, Zhang Y, Zhou S-y, Zhao Y-j (2005) Effect of HNO3 treatment on the surface structure of attapulgite and its adsorption property for Hg (II). Shaanxi Chem Ind 2:009

    Google Scholar 

  40. Shi L, Yao J, Jiang J, Zhang L, Xu N (2009) Preparation of mesopore-rich carbons using attapulgite as templates and furfuryl alcohol as carbon source through a vapor deposition polymerization method. Microporous Mesoporous Mater 122(1–3):294–300

    Article  CAS  Google Scholar 

  41. Sun L, Yan C, Chen Y, Wang H, Wang Q (2012) Preparation of amorphous carbon nanotubes using attapulgite as template and furfuryl alcohol as carbon source. J Non-Crystalline Solids 358(18–19):2723–2726

    Article  CAS  Google Scholar 

  42. Song W, Shao G, Wang G, Ma Z, Liu S, Song J, Wang C (2014) Enhanced electrochemical performance of nano-MnO2 modified by Ni(OH)2 as electrode material for supercapacitor. J Solid State Electrochem 18(11):3173–3180

    Article  CAS  Google Scholar 

  43. Zhang X, Wang X, Su J, Wang X, Jiang L, Wu H, Wu C (2012) The effects of surfactant template concentration on the supercapacitive behaviors of hierarchically porous carbons. J Power Sources 199:402–408

    Article  CAS  Google Scholar 

  44. Yang H, Tang A, Ouyang J, Li M, Mann S (2010) From natural attapulgite to mesoporous materials methodology, characterization and structural evolution. J Phys Chem B 114:2390–2398

    Article  CAS  Google Scholar 

  45. Malak-Polaczyk A, Matei-Ghimbeu C, Vix-Guterl C, Frackowiak E (2010) Carbon/λ-MnO2 composites for supercapacitor electrodes. J Solid State Chem 183(4):969–974

    Article  CAS  Google Scholar 

  46. Fan QH, Shao DD, Hu J, Wu WS, Wang XK (2008) Comparison of Ni2+ sorption to bare and ACT-graft attapulgites: effect of pH, temperature and foreign ions. Surf Sci 602(3):778–785

    Article  CAS  Google Scholar 

  47. Wang X, Li X, Sun X, Li F, Liu Q, Wang Q, He D (2011) Nanostructured NiO electrode for high rate Li-ion batteries. J Mater Chem 21(11):3571

    Article  CAS  Google Scholar 

  48. Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 48(13):3825–3833

    Article  CAS  Google Scholar 

  49. Wei Y, Liu H, Jin Y, Cai K, Li H, Liu Y, Kang Z, Zhang Q (2013) Carbon nanoparticle ionic liquid functionalized activated carbon hybrid electrode for efficiency enhancement in supercapacitors. New J Chem 37(4):886

    Article  CAS  Google Scholar 

  50. Korenblit Y, Rose M, Kockrick E, Borchardt L, Kvit A, Kaskel S, Yushin G (2010) High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. ACS Nano 4(3):1337–1344

    Article  CAS  Google Scholar 

  51. Gao Y, Wu J, Zhang W, Tan Y, Gao J, Zhao J, Tang B (2014) The calcined zeolitic imidazolate framework-8 (ZIF-8) under different conditions as electrode for supercapacitor applications. J Solid State Electrochem 18(11):3203–3207

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC, No. 21364004) and the College Students Training Project for Creative and Entrepreneurship of China (121073115).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He-Ming Luo or Jian-Qiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, HM., Yang, YF., Sun, YX. et al. Preparation of lactose-based attapulgite template carbon materials and their electrochemical performance. J Solid State Electrochem 19, 1171–1180 (2015). https://doi.org/10.1007/s10008-014-2714-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2714-6

Keywords

Navigation