Skip to main content
Log in

The mechanism of oxygen evolution at superactivated gold electrodes in aqueous alkaline solution

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The cathodic superactivation of gold using a repetitive potential cycling procedure is reported, and its significance for the oxygen evolution reaction is discussed. The superactivated surfaces exhibit a transient oxygen evolution response subsequent to monolayer oxidation and prior to extensive visible oxygen evolution. The kinetics of this oxygen evolution process are studied using a variety of transient and steady-state electrochemical techniques. The Tafel slope is shown to decrease with increased activation of the gold surface from ca. 120 to ca. 48 mV dec−1, and the charge transfer kinetics are enhanced by over three orders of magnitude for the superactivated electrodes. A mechanistic scheme involving the formation of monomeric Au(III) hydroxyl complexes of the form Au(OH)6 3− is proposed. The latter are of a transient nature and may be regarded as intermediates in the early stages of hydrous ß-oxide growth. These labile species may catalyse oxygen evolution by enhancing the formation of peroxy species that subsequently decompose with loss of oxygen gas from the surface oxide. This novel mechanistic route is in excellent agreement with recent literature studies and has the potential to unite a number of strands in the current understanding of the oxygen evolution reaction at gold surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. For a single electron transfer process, the transfer coefficient α can be equated with the symmetry factor β which, in the case of a symmetrical potential energy barrier, is equal to 0.5. For a multi-electron transfer process, the situation is more complicated and α is related to β as follows: \( {a}_f=\frac{n_f}{v}+{n}_r\beta \), where the subscript f denotes the forward reaction, n f is the number of electrons transferred before the rate-determining step (rds), v is the number of occurrences of the rds in the electrode reaction and n r is the number if electrons involved in the rds. However, in terms of a mechanistic analysis, it is useful to view a multistep electrode process as a sequence of one-electron transfer steps and/or chemical steps. Hence, β can be applied to the treatment of each elementary electron transfer step. In practical terms, it should be noted that the experimentally measurable quantity—the Tafel slope b—is related to α as follows: \( b=2.303\left(\frac{RT}{aF}\right) \) [7074].

References

  1. Schlogl R (2010) ChemSusChem 3:209–222

    Article  Google Scholar 

  2. Whitesides GM, Crabtree GW (2007) Science 315:796–798

    Article  CAS  Google Scholar 

  3. Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P (2010) ChemCatChem 2:724–761

    Article  CAS  Google Scholar 

  4. Chen Z, Higgins D, Yu A, Zhang L, Zhang J (2011) Energy Environ Sci 4:3167–3192

    Article  CAS  Google Scholar 

  5. Neburchilov V, Wang H, Martin JJ, Qu W (2010) J Power Sources 195:1271–1291

    Article  CAS  Google Scholar 

  6. Cheng F, Chen J (2012) Chem Soc Rev 41:2172–2192

    Article  CAS  Google Scholar 

  7. Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q (2011) J Appl Electrochem 41:1137–1164

    Article  CAS  Google Scholar 

  8. Koper MTM (2008) Faraday Discuss 140:11–24

    Article  CAS  Google Scholar 

  9. Koper MTM (2011) J Electroanal Chem 660:254–260

    Article  CAS  Google Scholar 

  10. Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) J Phys Chem B 108:17886–17892

    Article  CAS  Google Scholar 

  11. Rossmeisl J, Logadottir A, Norskov JK (2005) Chem Phys 319:178–184

    Article  CAS  Google Scholar 

  12. Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Norskov JK (2007) J Electroanal Chem 607:83–89

    Article  CAS  Google Scholar 

  13. Shen X, Small YA, Wang J, Allen PB, Fernandez-Serra MV, Hybertsen MS, Muckerman JT (2010) J Phys Chem C 114:13695–13704

    Article  CAS  Google Scholar 

  14. Suntivich J, May KJ, Gasteiger H, Goodenough JB, Shao-Horn Y (2011) Science 334:1383–1385

    Article  CAS  Google Scholar 

  15. Subbaraman R, Tripkovic D, Chang KC, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Nat Mater 11:550–557

    Article  CAS  Google Scholar 

  16. Busch M, Ahlberg E, Panas I (2011) Phys Chem Chem Phys 13:15062–15068

    Article  CAS  Google Scholar 

  17. Su HY, Gorlin Y, Man IC, Calle-Vallejo F, Nørskov JK, Jaramillo TF, Rossmeisl J (2012) Phys Chem Chem Phys 14:14010–14022

    Article  CAS  Google Scholar 

  18. Zaharieva I, Chernev P, Risch M, Klingan K, Kohlhoff M, Fischerb A, Dau H (2012) Energy Environ Sci 5:7081–7089

    Article  CAS  Google Scholar 

  19. Risch M, Klingan K, Heidkamp J, Ehrenberg D, Chernev P, Zaharieva I, Dau H (2011) Chem Commun 47:11912–11914

    Article  CAS  Google Scholar 

  20. Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New York

    Google Scholar 

  21. Schwab GM (1981) In: Anderson JR, Boudart M (ed) Catalysis—science and technology vol. 2. Springer-Verlag, Berlin p.4

  22. Bockris JOM, Reddy AKN, Gamboa-Aldeco M (2000) Modern electrochemistry, vol. 2A, 2nd edn. Kluwer, New York, p 1275

    Google Scholar 

  23. Koper MTM (2009) Faraday Discuss 140:11–24

    Article  Google Scholar 

  24. Burke LD (2004) Gold Bull 37:125–135

    Article  CAS  Google Scholar 

  25. Burke LD, O’Connell AM, O’Mullane AP (2003) J Appl Electrochem 33:1125–1135

    Article  CAS  Google Scholar 

  26. Burke LD, Kinsella LM, O’Connell AM (2004) Russ J Electrochem 40:1105–1114

    Article  CAS  Google Scholar 

  27. Burke LD, Nugent PF (1997) Gold Bull 30:43–53

    Article  CAS  Google Scholar 

  28. Burke LD, Nugent PF (1998) Gold Bull 31:39–50

    Article  CAS  Google Scholar 

  29. Burke LD, Ahern AJ, O’Mullane AP (2002) Gold Bull 35:3–10

    Article  CAS  Google Scholar 

  30. Burke LD, Bruton GM, Collins JA (1998) Electrochim Acta 44:1467–1479

    Article  CAS  Google Scholar 

  31. Burke LD, Buckley DT, Morrissey JA (1994) Analyst 119:841–845

    Article  CAS  Google Scholar 

  32. Plowman BJ, O’Mullane AP, Bhargava SK (2011) Faraday Discuss 152:43–62

    Article  CAS  Google Scholar 

  33. Burke LD, Moran JM, Nugent PF (2003) J Solid State Electrochem 7:529–538

    Article  CAS  Google Scholar 

  34. Burke LD, Hurley LM (1999) Electrochim Acta 44:3451–3473

    Article  CAS  Google Scholar 

  35. Burke LD, Hurley LM (2002) J Solid State Electrochem 6:101–110

    Article  CAS  Google Scholar 

  36. Nowicka AM, Hasse U, Sievers G, Donten M, Stojek Z, Fletcher S, Scholz F (2010) Angew Chem Int Ed 49:3006–3009

    Article  CAS  Google Scholar 

  37. Sun K, Kohyama M, Tanaka S, Takeda S (2012) J Phys Chem A 116:9568–9573

    Article  CAS  Google Scholar 

  38. Burke LD (1994) Electrochim Acta 39:1841–1848

    Article  CAS  Google Scholar 

  39. Burke LD, O’Mullane AP (2000) J Solid State Electrochem 4:285–297

    Article  CAS  Google Scholar 

  40. Burke LD, O’Dwyer KJ (1990) Electrochem Acta 35:1821–1827

    Article  CAS  Google Scholar 

  41. Burke LD, O’Dwyer KJ (1990) Electrochim Acta 35:1829–1835

    Article  CAS  Google Scholar 

  42. O’Mullane AP, Bhargava SK (2011) Electrochem Commun 13:852–855

    Article  Google Scholar 

  43. Cherevko S, Kulyk N, Chung CH (2012) Electrochim Acta 69:190–196

    Article  CAS  Google Scholar 

  44. Conway BE (1995) Prog Surf Sci 49:331–452

    Article  CAS  Google Scholar 

  45. Laitinen HA, Chao MS (1961) J Electrochem Soc 108:726–731

    Article  CAS  Google Scholar 

  46. Nicol M (1980) Gold Bull 13:46–55

    Article  CAS  Google Scholar 

  47. Puddephatt R (1978) The chemistry of gold. Elsevier, New York, p 274

    Google Scholar 

  48. Peuckert M, Coenen FP, Bonzel HP (1984) Surf Sci 141:515–532

    Article  CAS  Google Scholar 

  49. Ferro CM, Calandra AJ, Arvia AJ (1975) J Electroanal Chem 59:239–253

    Article  CAS  Google Scholar 

  50. Martins ME, Cordova R, Arvia AJ (1981) Electrochim Acta 26:1547–1554

    Article  CAS  Google Scholar 

  51. Oesch U, Janata J (1983) Electrochim Acta 28:1237–1246

    Article  CAS  Google Scholar 

  52. Juodkazis K, Juodkazyte J, Jasulaitiene V, Lukinskas A, Sebeka B (2000) Electrochem Commun 2:503–507

    Article  CAS  Google Scholar 

  53. Schneeweiss MA, Kolb DM (1997) Solid State Ionics 94:171–179

    Article  CAS  Google Scholar 

  54. Xia SJ, Birss VI (2001) J Electroanal Chem 500:562–573

    Article  CAS  Google Scholar 

  55. Diaz-Moralez O, Calle-Vallejo F, de Munck C, Koper MTM (2013) Chem Sci 4:2334–2343

    Article  Google Scholar 

  56. Burke LD, McRann M (1981) J Electroanal Chem 125:387–399

    Article  CAS  Google Scholar 

  57. Burke LD, Hopkins GP (1984) J Appl Electrochem 14:679–686

    Article  CAS  Google Scholar 

  58. Chialvo AC, Triaca WE, Arvia AJ (1984) J Electroanal Chem 171:303–316

    Article  CAS  Google Scholar 

  59. Burke LD, O’Sullivan EJM (1981) J Electroanal Chem 117:155–160

    Article  CAS  Google Scholar 

  60. Burke LD, Lyons MEG, Whelan DP (1982) J Electroanal Chem 139:131–142

    Article  CAS  Google Scholar 

  61. Burke LD, Lyons MEG (1986) In: White RE, Bockris JOM, Conway BE (ed) Modern aspects of electrochemistry, no. 18. Plenum Press, New York p.169–248

  62. Burke LD, Nugent PF (1998) J Electroanal Chem 444:19–29

    Article  CAS  Google Scholar 

  63. Burke LD, Cunnane VJ, Lee BH (1992) J Electrochem Soc 139:399–406

    Article  CAS  Google Scholar 

  64. Burke LD, O’Leary WA (1989) J Appl Electrochem 19:758–767

    Article  CAS  Google Scholar 

  65. Burke LD, Lee BH, Ryan TG (1990) J Electrochem Soc 137:2417–2422

    Article  CAS  Google Scholar 

  66. Selwood PW (1964) Magnetoelectrochemistry, 2nd edn. Interscience, New York, pp 167–341

    Google Scholar 

  67. Harrington DA, van den Driessche P (2011) Electrochim Acta 56:8005–8013

    Article  CAS  Google Scholar 

  68. Harrington DA, Conway BE (1987) Electrochim Acta 32:1703–1712

    Article  CAS  Google Scholar 

  69. Conway BE (2005) In: Barsoukov E, Macdonald JR (ed) Impedance spectroscopy—theory, experiment, and applications. J. Wiley & Sons, New Jersey p.469–497

  70. Guidelli R, Compton RG, Feliu JM, Gileadi E, Lipkowski J, Schmickler W, Trasatti S (2014) Pure Appl Chem 86:245–258

    CAS  Google Scholar 

  71. Guidelli R, Compton RG, Feliu JM, Gileadi E, Lipkowski J, Schmickler W, Trasatti S (2014) Pure Appl Chem 86:259–262

    CAS  Google Scholar 

  72. Doyle RL, Godwin IJ, Brandon MP, Lyons MEG (2013) Phys Chem Chem Phys 15:13737–13783

    Article  CAS  Google Scholar 

  73. Lyons MEG, Doyle RL, Fernandez D, Godwin IJ, Browne MP, Rovetta A (2014) Electrochem Commun 45:60–62

    Article  CAS  Google Scholar 

  74. Lyons MEG, Doyle RL, Fernandez D, Godwin IJ, Browne MP, Rovetta A (2014) Electrochem Commun 45:56–59

    Article  CAS  Google Scholar 

  75. Lyons MEG, Brandon MP (2010) J Electroanal Chem 641:119–130

    Article  CAS  Google Scholar 

  76. McDonald JJ, Conway BE (1962) Proc Roy Soc London SerA 269:419–440

    Article  Google Scholar 

  77. Meyer RE (1960) J Electrochem Soc 107:847–853

    Article  CAS  Google Scholar 

  78. Yeo BS, Klaus SL, Ross PN, Mathies RA, Bell AT (2010) Chem Phys Chem 11:1854–1857

    CAS  Google Scholar 

  79. Yeo BS, Bell AT (2012) J Phys Chem C 116:8394–8400

    Article  CAS  Google Scholar 

  80. Yeo BS, Bell AT (2011) J Am Chem Soc 133:5587–5593

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to Prof. Stephen Fletcher on the occasion of his 65th birthday. He has truly been an inspiration to physical electrochemists for many years. This publication has emanated in part from research conducted with the financial support of Science Foundation Ireland (SFI) under grant number SFI/10/IN.1/I2969.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Doyle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doyle, R.L., Lyons, M.E.G. The mechanism of oxygen evolution at superactivated gold electrodes in aqueous alkaline solution. J Solid State Electrochem 18, 3271–3286 (2014). https://doi.org/10.1007/s10008-014-2665-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2665-y

Keywords

Navigation