Skip to main content
Log in

Core–shell structured Co3O4@NiCo2O4 electrodes grown on Ni foam for high-performance supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Recently, supercapacitors (SCs) have emerged as one of the most promising energy storage devices, which can be attributed to their exceptional power density, rapid charge–discharge rate, and superior cycling stability. Despite the progress made in the signal metal oxide of SCs, several challenges still need to be addressed, including the poor electrical conductivity, unsatisfactory cyclic stability, and low energy density. It is crucial to develop innovative composite materials with synergistic effects to address these issues. In this study, the cobalt oxide and Co3O4@NiCo2O4 composite were successfully synthesized on Ni foams by a hydrothermal method. Composite electrodes featured by the hierarchical core–shell structures were identified as an effective approach for improving the electrochemical performance of SCs. Noteworthily, the as-fabricated core–shell structures demonstrated excellent specific capacitance of 1514 F g−1 at a current density of 1 A g−1, a stable operating voltage of 0–0.5 V and outstanding cycling stability (with almost no attenuation after 2000 cycles at a charge–discharge current density of 10 A g−1). The enhanced electrochemical behavior can be attributed to the synergistic effect between two electrode active materials and the presence of more electron and ion transport pathways. The as-prepared composite electrodes can be considered as the potential electrode materials for energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wei XJ, Wan SG, Gao SY (2016) Nano Energy 28:206–215

    Article  CAS  Google Scholar 

  2. Jiang X, Zhao JJ, Li YL, Ahuja R (2013) Adv Funct Mater 23:5846

    Article  CAS  Google Scholar 

  3. Gao LN, Wang XF, Xie Z (2013) WF Song, Wang LJ, Wu X, Qu FY, Chen D, Shen GZ. J Mater Chem A 1:7167–7173

    Article  CAS  Google Scholar 

  4. Wang G, Zhang L, Zhang J (2012) Chem Soc Rev 41:797–828

    Article  CAS  PubMed  Google Scholar 

  5. Zhang S, Pan N (2015) Adv Energy Mater 5:1401401

    Article  Google Scholar 

  6. Zhang JS, Wang YC (2022) MH Yu, JF Ni, Li L. ACS Energy Lett 7:1835–1841

    Article  CAS  Google Scholar 

  7. Sun ML, Wang ZZ, Ni JF, Li L (2020) Adv Funct Mater 30:1910043

    Article  CAS  Google Scholar 

  8. An YL, Tian Y, Man QY, Shen HT, Liu CK, Qian Y, Xiong SL, Feng JK, Qian YT (2022) ACS Nano 16:6755–6770

    Article  CAS  PubMed  Google Scholar 

  9. Yin BS, Zhang SW, Ren QQ, Liu C, Ke K, Wang ZB (2017) J Mater Chem A 5:24942–24950

    Article  CAS  Google Scholar 

  10. Song XS, Li XF, Bai ZM, Yan B, Xiong DB, Lin LX, Zhao H, Li DJ, Shao YY (2018) Carbon 133:14–22

    Article  CAS  Google Scholar 

  11. Li RZ, Wang YM, Zhou C, Wang C, Ba X, Li YY, Huang XT, Liu JP (2015) Adv Funct Mater 25:5384–5394

    Article  CAS  Google Scholar 

  12. Xia XH, Chao DL, Zhang YQ, Zhan JY, Zhong Y, Wang XL, Shen ZX, Tu JP, Fan HJ (2016) Small 12:3048–3058

    Article  CAS  PubMed  Google Scholar 

  13. Javed MS, Dai SG, Wang MJ, Guo DL, Chen L, Wang X, Hu CG, Xi Y (2015) J Power Sources 285:63–69

    Article  CAS  Google Scholar 

  14. Sun XL, Jiang ZQ, Li CX, Jiang YY, Sun XY, Tian XN, Luo LJ, Hao XG, Jiang ZJ (2016) J Alloys Compd 685:507–517

    Article  CAS  Google Scholar 

  15. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Padmanathan N, Selladurai S, Razeeb KM (2015) RSC Adv 5:12700–12709

    Article  ADS  CAS  Google Scholar 

  17. Li B, Zheng MB, Xue HG, Pang H (2016) Inorg Chem Front 3:175–202

    Article  CAS  Google Scholar 

  18. Arul NS, Mangalaraj D, Ramachandran R, Grace AN, Hana JI (2015) J Mater Chem A 3:15248–15258

    Article  CAS  Google Scholar 

  19. Gao ZD, Zhu X, Li YH, Zhou XM, Song YY, Schmuki P (2015) Chem Commun 51:7614–7617

    Article  CAS  Google Scholar 

  20. Kaabi N, Chouchene B, Mabrouk W, Matoussi F, Selmane E, Hmida BH (2018) Solid State Ionics 325:74–79

    Article  CAS  Google Scholar 

  21. Zhang SW, Yin BS, Liu C, Wang ZB, Gu DM (2018) Chem Eng J 349:509–521

    Article  CAS  Google Scholar 

  22. Zhang YZ (2014) WangY, Xie YL, Cheng T, Lai WY, Pang H, Huang W. Nanoscale 6:14354–14359

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Huang M, Zhao XL, Li F, Li W, Zhang B, Zhang YX (2015) J Mater Chem A 3:12852–12857

    Article  CAS  Google Scholar 

  24. Zhang S, Yin B, Wang Z, Peter F (2016) Chem Eng J 306:193–203

    Article  CAS  Google Scholar 

  25. Li XM, Jiang LF, Zhou C, Liu JP, Zeng HB (2015) NPG Asia Mater 7:e165

    Article  CAS  Google Scholar 

  26. Guan Q, Cheng JL, Wang B, Ni W (2014) Gu GF, Li XD, Huang L, Yang G C, Nie F. ACS Appl Mater Interfaces 6:7626–7632

    Article  CAS  PubMed  Google Scholar 

  27. Gu WT, Sevilla M, Magasinski A, Fuertes AB, Yushin G (2013) Energy Environ Sci 6:2465–2476

    Article  CAS  Google Scholar 

  28. Lee DJ, Choi J, Ryou MH, Kim CH, Lee YM, Park JK (2014) J Mater Chem A 2:2906–2909

    Article  CAS  Google Scholar 

  29. Guo D (2015) RenWJ, Chen Z, Mao ML, Li QH, Wang TH. RSC Adv 5:10681–10687

    Article  ADS  CAS  Google Scholar 

  30. Zhou D, Ni JF, Li L (2019) Nano Energy 57:711–717

    Article  CAS  Google Scholar 

  31. Su DQ, Zhang LM, Tang ZH, Yu TT, Liu HL, Zhang JH, Liu YJ, Yuan AH, Kong QH (2018) J Nanosci Nanotechnol 18:4884–4890

    Article  CAS  PubMed  Google Scholar 

  32. Zheng XT, Ye YL, Yang Q, Geng BY, Zhang XJ (2016) Dalton Trans 45:572–578

    Article  CAS  PubMed  Google Scholar 

  33. Ke QQ, Tang CH, Yang ZC, Zheng MR, Mao L, Liu HJ, Wang J (2015) Electrochim Acta 163:9–15

    Article  CAS  Google Scholar 

  34. Lv JL (2017) Y Meng, Liang TX, Miura H. Mater Lett 197:127–130

    CAS  Google Scholar 

  35. Gao X, Zhang YX, Huang M, Li F, Hua C, Yu L, Zheng HL (2014) Ceram Int 40:15641–15646

    Article  CAS  Google Scholar 

  36. Zhang GH, Wang TH, Yu XZ, Zhang HN, Du HG, Lun BG (2013) Nano Energy 2:586–594

    Article  CAS  Google Scholar 

  37. Zhu YR, Peng PP, Wu JZ, Yia TF, Xie Y, Luo SH (2019) Solid State Ionics 336:110–119

    Article  CAS  Google Scholar 

  38. Zhang C, Xiao J, Lv XL, Qian LH, Yuan SL, Wang S, Lei PX (2016) J Mater Chem A 4:16516–16523

    Article  CAS  Google Scholar 

  39. Yang Y, Zhou M, Guo WL, Cui X, Li YH, Liu FL, Xiao P, Zhang YH (2015) Electrochim Acta 174:246–253

    Article  CAS  Google Scholar 

  40. Zheng C, Cao C, Chang R, Hou J, Zhai H (2016) Phys Chem Chem Phys 18:6268

    Article  CAS  PubMed  Google Scholar 

  41. Zheng X, Han ZC, Chai F, Qu FY, Xia H, Wu X (2016) Dalton Trans 45:12862–12870

    Article  CAS  PubMed  Google Scholar 

  42. Sennu P, Aravindan V, Lee YS (2016) J Power Sources 306:248–257

    Article  CAS  Google Scholar 

  43. Wang XL, Fu JW, Wang QF, Dong ZJ, Wang XL, Hu AY, Wang W, Yang SB (2020) Crystals 10:720–730

    Article  CAS  Google Scholar 

  44. Satpathy BK, Nayak AK, Raj CR, Debabrata P (2019) New J Chem 43:15177–15186

    Article  CAS  Google Scholar 

  45. Hao JX, Peng SL, Qin TF, Wang ZL, Wen YX, He DY, Zhang JC, Zhang ZY, Fan XY, Cao GZ (2017) Sci China Mater 60:1168–1178

  46. Cui SX, Li TT, Guo CL, Wang LL, Zhang CC, Yan ZY, Wei YH, Hou LF, Xu LC, Xu CK (2019) J Nanosci Nanotechnol 19:47–56

    Article  CAS  PubMed  Google Scholar 

  47. Li YH, Zhang YF, Li YJ, Wang ZY, Fu HY, Zhang XN, Chen YH, Zhang HZ, Li XD (2014) Electrochim Acta 145:177–184

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51971166).

Funding

National Natural Science Foundation of China-China Academy of General Technology Joint Fund for Basic Research, 51971166, Zengyun Jian.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengyun Jian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Jian, Z. Core–shell structured Co3O4@NiCo2O4 electrodes grown on Ni foam for high-performance supercapacitors. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05808-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05808-7

Keywords

Navigation