Skip to main content
Log in

Mechanical and microstructural properties of fixation systems used in oral and maxillofacial surgery

  • Original Article
  • Published:
Oral and Maxillofacial Surgery Aims and scope Submit manuscript

Abstract

Objectives

This paper aims to evaluate in vitro the mechanical and microstructural properties of internal fixation systems used in oral and maxillofacial surgeries.

Materials and methods

Four brands of internal fixation systems (screws and 4-hole straight plates) were selected and assigned to four groups: G1 Leibinger®, G2 Tóride®, G3 Engimplan®, and G4 Medartis®. The systems were submitted to Vickers hardness testing, metallographic and interstitial elements chemical composition analyses. Data were submitted to ANOVA and Tukey’s test for statistical analysis.

Results

Plates in groups 1, 2, and 3 showed similar microstructure and mechanical properties, different from those in G4 revealing larger grains. In all groups, the screws showed similar microstructure, with uniform arrangement and size of grains; the screws showed higher hardness values than those observed for the plates.

Conclusions

The results indicate that all materials tested are adequate for use in oral maxillofacial surgeries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ariyan GF (1984) Facial fractures: Hippocratic management. Head & Neck Surgery 6:1007–1013

    Article  Google Scholar 

  2.  Fonseca RJ, Frost H, Hersh E, Levin LM (2000) Oral and maxillofacial surgery, 3ªEd, vol 1, cap 18. Publisher Saunders, St Louis Missouri, p 481–522

  3. Greenberg AM, Prein J (2002) Craniomaxillofacial reconstructive and corrective bone surgery: principles of internal fixation using the AO/ASIF technique. Springer© Springer-Verlag, New York, chapter 12. ISBN 0-387-94686-1

    Book  Google Scholar 

  4. Katakura A, Shibahara T, Noma H, Yoshinari M (2004) Material analysis of AO plate fracture cases. J Oral Maxillofac Surg 62:348–352

    Article  PubMed  Google Scholar 

  5. Eliaz N (2012) Degradation of implant materials. Springer Science Business Media, New York, p 29

    Book  Google Scholar 

  6. Trivellato AE, Mazzonetto R, Passeri LA, Consani S (2000) Estudo químico, macroscópico e da resistência à flexão de placas e parafusos de titânio usados na fixação interna rígida. Pesqui Odontol Bras 14(4):392–398

    Article  Google Scholar 

  7. ASTM E3-95: Standard Practice for Preparation of Metallographic Specimens. http://compass.astm.org/Standards/HISTORICAL/E3-95.htm. Accessed 9 Nov 2015

  8. American Society for Testing Materials, Philadelfia. E384-11e1; Standard test method for Knoop and Vickers hardness of materials. 2011-http://www.astm.org/Standards/E384.htm

  9. ASTM F67: Standard Specification for Unalloyed Titanium, for Surgical Implant Applications. http://www.astm.org/cgi-bin/resolver.cgi?F67-13. Accessed 9 Nov 2015

  10. ASTM F136: Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401). http://www.astm.org/cgi-bin/resolver.cgi?F136-13. Accessed 9 Nov 2015

  11. Ray NJ (1986) Aspects of the metallography of some pre-formed root canal posts and dentine pins. J Dent 14:218–222

    Article  CAS  PubMed  Google Scholar 

  12. ASTM F543-13: Standard Specification and Test Methods for Metallic Medical Bone Screws. http://www.astm.org/cgi-bin/resolver.cgi?F543-13e1. Accessed 9 Nov 2015

  13. ASTM F382 – 99(2008)e1: Standard Specification and Test Method for Metallic Bone Plates. http://compass.astm.org/Standards/HISTORICAL/F382-99R08E1.htm. Accessed 9 Nov 2015

  14. Bresciani-Filho E, Silva IB, Batalha GF, Button ST. Conformação plástica dos metais. Campinas-SP: Editora da Unicamp, 6ª edição (1ª edição digital), 2011. http://www.fem.unicamp.br/~sergio1/CONFORMACAOPLASTICADOSMETAIS.pdf. Accessed 9 Nov 2015

  15. Leyens C, Peters M (2003) Titanium and titanium alloys. In: Fundamentals and applications. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. ISBN 3-527-30534-3

    Google Scholar 

  16. Wright TM, Maher SA (2007) Biomaterials. In: Einhorn T, O’Keefe R, Buckwalter J (eds) Orthopaedic basic science foundations of clinical practice, 3rd edn. American Academy of Orthopedic Surgeons, Rosemont, IL, pp 65–75

    Google Scholar 

  17. Bundy KJ (1994) Corrosion and other electrochemical aspects of biomaterials. Crit Rev Biomed Eng 22:139–251

    CAS  PubMed  Google Scholar 

  18. Hayes JS, Richards RS (2010) The use of titanium and stainless steel in fracture fixation. Expert Rev Med Devices 7(6):843–853

    Article  CAS  PubMed  Google Scholar 

  19. Merritt K, Brown SA (1995) Release of hexavalent chromium from corrosion of stainless steel and cobalt-chromium alloys. J Biomed Mater Res 29:627–633

    Article  CAS  PubMed  Google Scholar 

  20. Singh R, Dahotre NB (2007) Corrosion degradation and prevention by surface modification of biometallic materials. J Mater Sci Mater Med 18:725–751

    Article  CAS  PubMed  Google Scholar 

  21. Acevedo D, Loy BN, Lee B, Omid R, Itamura J (2013) Mixing implants of differing metallic composition in the treatment of upper-extremity fractures. Orthopedics 36(9):e1175–9. doi:10.3928/01477447-20130821-21

    Article  PubMed  Google Scholar 

  22. Ciuccio RL, Luiz NE, Jacomini-Filho A, Alvarado PP (2010) Testing of galvanic corrosion of titanium plates and screws used in rigid internal fixation. Innov Implant J, Biomater Esthet (Online) 5(3):19–22, ISSN 1984–5960

    Google Scholar 

  23. Keel JB, Kuster MS (2004) Massive wear of an incompatible metal-on-metal articulation in total hip arthroplasty. J Arthroplasty 19:638

    Article  PubMed  Google Scholar 

  24. Fazel-Rezai R (2011) Biomedical engineering—from theory to applications. Chapter 17. Metals for biomedical applications. Copyright © InTech, Rijeka. ISBN 978-953-307-637-9

    Book  Google Scholar 

  25. Iamashita HY, Pereira VA, Monnazzi MS, Gabrielli MFR, Vaz LG, Passeri, LA. In vitro biomechanical evaluation of sagittal split osteotomy fixation with a specifically designed miniplate, Int J Oral Maxillofac Surg (2012), http://dx.doi.org/10.1016/j.ijom.2012.07.008

  26. Haug RH, Serafin BL (2008) Mandibular angle fractures: a clinical and biomechanical comparison—the works of Ellis and Haug. Craniomaxillofac Trauma Reconstr 1(1):31–38. doi:10.1055/s-0028-1098961

    Article  PubMed Central  PubMed  Google Scholar 

  27. Haug RH, Fattahi TT, Goltz M (2001) A biomechanical evaluation of mandibular angle fracture plating techniques. J Oral Maxillofac Surg 59(10):1199–1210

    Article  CAS  PubMed  Google Scholar 

  28. Martola M, Lindqvist C, Hänninen H, Al-Sukhun J. Fracture of titanium plates used for mandibular reconstruction following ablative tumor surgery. Journal of Biomedical Materials Research Part B: Applied Biomaterials. DOI 10.1002/jbmb. 2006

  29. Karl-Winnacker-Institut. Minimization of the oxygen embrittlement of Ti-Alloys. High Temperature Materials. DECHEMA - Forschungsinstitut. 2011. [acesso em 2012 Agost 03] http://kwi.dechema.de/kwi/en/englishkwi.html

  30. Woodford DA. Gas phase embrittlement and time dependent cracking of nickel based superalloys. Energy Materials 2006;1(1), 59–79. doi: 10.1179/174892306X99679

  31. Hayes RW. Oxygen embrittlement and time-dependent grain-boundary cracking of ALLVAC 718PLUS. Volume 39A, November 2008. The Minerals, Metals & Materials Society and ASM International 2008. DOI: 10.1007/s11661-008-9564-8

  32. Floreen S, Raj R (1983) Flow and fracture at elevated temperature. ASM, Warrendale, PA, pp 383–404

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Prof. Dr. Rubens Caram Jr. and to FEM/DEM/LABMET—Unicamp for your important support in conducting and analyzing the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Breno Meneses Mendes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, M.B.M., de Medeiros, R.C., Lauria, A. et al. Mechanical and microstructural properties of fixation systems used in oral and maxillofacial surgery. Oral Maxillofac Surg 20, 85–90 (2016). https://doi.org/10.1007/s10006-015-0532-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10006-015-0532-3

Keywords

Navigation