Skip to main content
Log in

Nonlinear optical properties of azo sulfonamide derivatives

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

The present work deals with the linear and nonlinear optical properties such as the dipole moment, polarizability, total hyperpolarizability, electric field–induced second harmonic generation, and hyper-Rayleigh scattering first hyperpolarizability of four heterocyclic azo compounds containing the sulfonamide group considered promise in nonlinear optic. The obtained polarizability and hyperpolarizability were supported by the frontier molecular orbital analysis. The properties have been effectively estimated and thoroughly examined to shed light on the nonlinear optical activity based on the density functional theory. The observed results show a high total first hyperpolarizability \({\beta }_{{\text{tot}}}\) up to 2503 a.u. and a low energy gap \({E}_{{\text{g}}}\) less than 1.41 eV. An inverse relationship has been obtained between the \({\beta }_{{\text{tot}}}\) and \({E}_{{\text{g}}}\). The calculated \({E}_{{\text{g}}}\) values confirm that charge occurs within the azo sulfonamides. The new study provides a promising avenue for the development of these azo sulfonamides as novel NLO materials.

Methods

The molecular modeling and the theoretical studies were performed with Gaussian software packages. The B3LYP/6–311 + G** level was used for optimization. All the linear and nonlinear optical properties reported here are obtained using the DFT. The optimized structures and their frontier molecular orbitals were plotted using the GaussView 5.1 program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study, which support the plots within this paper and the other findings of this study, are included in this article and its supplementary information. Source data are provided in this paper.

References

  1. Rouhani Sh, Hosseinnezhad M (2015) Application of azo dye as sensitizer in dye-sensitized solar cells. Prog Color Colorants Coat 8:259–265. https://doi.org/10.30509/PCCC.2015.75864

    Article  Google Scholar 

  2. Eltaboni R, Bader N, Elsharif R, Ahmida A (2022) Chemistry and applications of azo dyes: a comprehensive review. J Chem Rev 4:313–330. https://doi.org/10.22034/jcr.2022.349827.1177

    Article  CAS  Google Scholar 

  3. Yazdanbakhsh MR, Mohammadi A, Abbasnia M (2010) Some heterocyclic azo dyes derived from thiazolyl derivatives; synthesis; substituent effects and solvatochromic studies. Spectrochim Acta Part A Mol Biomol Spectrosc 77:1084–1087. https://doi.org/10.1016/j.saa.2010.08.079

    Article  CAS  Google Scholar 

  4. Zhang Y, Yang H, Sun Y, Zheng X, Guo (2022) Molecular dynamics simulations on photoinduced switchable Tg and self-healing behaviors of azobenzene-containing polymers. Comput Mater Sci 215:111810. https://doi.org/10.1016/j.commatsci.2022.111810

    Article  CAS  Google Scholar 

  5. Mikroyannidis JA, Tsagkournos DV, Balraju P, Sharma GD (2011) Low band gap dyes based on 2-styryl-5-phenylazo-pyrrole: synthesis and application for efficient dye-sensitized solar cells. J Power Sources 196:4152–4161. https://doi.org/10.1016/j.jpowsour.2010.12.038

    Article  CAS  Google Scholar 

  6. Delaire JA, Nakatani K (2000) Linear and nonlinear optical properties of photochromic molecules and materials. Chem Rev 100:1817–1846. https://doi.org/10.1021/cr980078m

    Article  CAS  PubMed  Google Scholar 

  7. Fominykh OD, Sharipova AV, Balakina MY (2019) Atomistic modeling of polymer materials based on methacrylic copolymers with azochromophores in the side chain. Comput Mater Sci 168:32–39. https://doi.org/10.1016/j.commatsci.2019.05.057

    Article  CAS  Google Scholar 

  8. Raposo MMM, Ferreira AMFP, Amaro M, Belsley M, Moura CVP (2009) The synthesis and characterization of heterocyclic azo dyes derived from 5-N, N-dialkylamino-2,2’-bithiophene couplers. Dyes Pigm 83:59–65. https://doi.org/10.1016/j.dyepig.2009.03.012

    Article  CAS  Google Scholar 

  9. Derkowska-Zielinska B, Gondek E, Pokladko-Kowar M, Kaczmarek-Kedziera A, Kysil A, Lakshminarayana G, Krupka O (2020) Photovoltaic cells with various azo dyes as components of the active layer. Sol Energy 203:19–24. https://doi.org/10.1016/j.solener.2020.04.022

    Article  CAS  Google Scholar 

  10. Fominykh OD, Sharipova AV, Balakina MY (2022) Molecular modeling of methacrylic composite materials doped with nonlinear optical azochromophores with various acceptor fragments. Comput Mater Sci 201:110909. https://doi.org/10.1016/j.commatsci.2021.110909

    Article  CAS  Google Scholar 

  11. Polymers D, Jánossy I, Tóth-katona T (2022) Photo-orientation of liquid crystals on azo dye-containing polymers, István Jánossy and Tibor Tóth-Katona. Polymers 14:159. https://doi.org/10.3390/polym14010159

    Article  CAS  Google Scholar 

  12. Belmar J (2010) New liquid crystals containing the benzothiazol unit: amides and azo compounds. Liq Cryst 26:389–396. https://doi.org/10.1080/026782999205164

    Article  Google Scholar 

  13. Na H, Kim J, Hong K, Ko B (2006) Synthesis of azo dye containing polymers and application for optical data storage. Mol Cryst Liq 349:35–38. https://doi.org/10.1080/10587250008024859

    Article  Google Scholar 

  14. Athira LS, Balachandran S, Annaraj J, Noelson EA (2019) Molecular structure, spectroscopic, solvatochromic, dyeing performance and biological evaluations of heterocyclic azo dye, 4-[(E)-(4-hydroxy-2-methylphenyl)diazenyl]-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one. J Mol Struct 1195:556–569. https://doi.org/10.1016/j.molstruc.2019.06.007

    Article  CAS  Google Scholar 

  15. Yadav SB, Taware S, Sreenath MC, Chitrambalam S, Joe IH, Sekar N (2020) Experimental and theoretical investigation of linear and nonlinear optical properties of ethyl-3-hydroxy-2-napthoate azo dyes by solvatochromic, computational aspects, and Z-scan technique. J Phys Org Chem 33:4050. https://doi.org/10.1002/poc.4050

    Article  CAS  Google Scholar 

  16. Coelho PJ, Carvalho LM, Moura JCVP, Raposo MMM (2009) Novel photochromic 2, 2′-bithiophene azo dyes. Dyes Pigm 82:130–133. https://doi.org/10.1016/j.dyepig.2008.12.005

    Article  CAS  Google Scholar 

  17. Juvekar V, Lim CS, Lee DJ, Park SJ, Song GO, Kang H, Kim HM (2021) An azo dye for photodynamic therapy that is activated selectively by two-photon excitation. Chem Sci 12:427–434. https://doi.org/10.1039/d0sc05686c

    Article  CAS  Google Scholar 

  18. Sultan HA, Muala A, Hassan QMA, Fahad T, Emshary CA, Raheem NA (2021) Synthesis, characterization and the nonlinear optical properties of newly benzenesulfonamide. Spectrochim Acta Part A Mol Biomol Spectrosc 251:119487. https://doi.org/10.1016/j.saa.2021.119487

    Article  CAS  Google Scholar 

  19. Djeukoua KSD, Fondjo ES, Tamokou J, Tsemeugne J, Peter FW, Tsopmo A, Tchieno FMM, Ekom SE, Pecheu CN, Tonle IK, Kuiateb J-R (2019) Synthesis, characterization, antimicrobial activities and electrochemical behavior of new phenolic azo dyes from two thienocoumarin amines. Arkivoc 416–430. https://doi.org/10.24820/ark.5550190.p010.994

  20. El-Sonbati AZ, Diab MA, Morgan SM (2019) Thermal properties, antimicrobial activity and DNA binding of Ni (II) complexes of azo dye compounds. J Mol Liq 225:195–206. https://doi.org/10.1016/j.molliq.2016.11.047

    Article  CAS  Google Scholar 

  21. Tahir T, Ashfaq M, Saleem M, Rafiq M, Shahzad MI, Kotwica-Mojzych K, Mojzych M (2021) Pyridine scaffolds, phenols and derivatives of azo moiety: current therapeutic perspectives. Molecules 26:4872. https://doi.org/10.3390/molecules26164872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gupta VK, Saravanan R, Agarwal S, Gracia F, Khan MM, Qin J, Mangalaraja RV (2017) Degradation of azo dyes under different wavelengths of UV light with chitosan-SnO2 nanocomposites. J Mol Liq 232:423–430. https://doi.org/10.1016/j.molliq.2017.02.095

    Article  CAS  Google Scholar 

  23. Saeed AM, Alneyadi SS, Abdou IM, Access O (2020) Anticancer activity of novel Schiff bases and azo dyes derived from 3-amino-4-hydroxy-2H-pyrano [3,2-c] quinoline-2,5 (6H)-dione. Heterocycl Comm 26:192–205. https://doi.org/10.1515/hc-2020-0116

    Article  CAS  Google Scholar 

  24. El-ghamry HA, Al-ziyadi RO, Alkhatib FM, Takroni KM, Khedr AM (2023) Metal chelates of sulfafurazole azo dye derivative: synthesis, structure affirmation, antimicrobial, antitumor, DNA binding, and molecular docking simulation. Bioinorg Chem Appl 2023:2239976. https://doi.org/10.1155/2023/2239976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Janjua MRSA, Jamil S, Mahmood A, Zafar A, Haroon M, Bhatti HN (2015) Solvent-dependent non-linear optical properties of 5,5′-disubstituted-2,2′-bipyridine complexes of ruthenium(II): a quantum chemical perspective. Aust J Chem 68:1502–1507. https://doi.org/10.1071/CH14736

    Article  CAS  Google Scholar 

  26. Janjua MRSA, Mahmood A, Ahmad F (2013) Solvent effects on nonlinear optical response of certain tetrammineruthenium(II) complexes of modified 1,10-phenanthrolines. Can J Chem 91:1303–1309. https://doi.org/10.1139/cjc-2013-0377

    Article  CAS  Google Scholar 

  27. Janjua MRSA (2021) Quantum chemical design of D–π–A-type donor materials for highly efficient, photostable, and vacuum-processed organic solar cells. Energy Technol 9:1–12. https://doi.org/10.1002/ente.202100489

    Article  CAS  Google Scholar 

  28. Janjua MRSA (2021) Theoretical framework for encapsulation of inorganic B12N12 nanoclusters with alkaline earth metals for efficient hydrogen adsorption: a step forward toward hydrogen storage materials. Inorg Chem 60:2816–2828. https://doi.org/10.1021/acs.inorgchem.0c03730

    Article  CAS  PubMed  Google Scholar 

  29. Janjua MRSA, Su Z-M, Guan W, Liu C-G, Yan L-K, Song P, Maheen G (2010) Tuning second-order non-linear (NLO) optical response of organoimido-substituted hexamolybdates through halogens: quantum design of novel organic-inorganic hybrid NLO materials. Aust J Chem 63:836. https://doi.org/10.1071/CH10094

    Article  CAS  Google Scholar 

  30. Janjua MRSA, Guan W, Yan L, Su Z-M, Karim A, Akbar J (2010) Quantum chemical design for enhanced second-order NLO response of terpyridine-substituted hexamolybdates. Eur J Inorg Chem 2010:3466–3472. https://doi.org/10.1002/ejic.201000428

    Article  CAS  Google Scholar 

  31. Janjua MRSA, Guan W, Yan L, Su Z-M, Ali M, Bukhari IH (2010) Prediction of robustly large molecular second-order nonlinear optical properties of terpyridine-substituted hexamolybdates: structural modelling towards a rational entry to NLO materials. J Mol Graph Model 28:735–745. https://doi.org/10.1016/j.jmgm.2010.01.011

    Article  CAS  PubMed  Google Scholar 

  32. Janjua MRSA, Irfan A, Hussien M, Ali M, Saqib M, Sulaman M (2022) Machine-learning analysis of small-molecule donors for fullerene based organic solar cells. Energy Technol 10:2200019. https://doi.org/10.1002/ente.202200019

    Article  CAS  Google Scholar 

  33. Janjua MRSA (2017) Nonlinear optical response of a series of small molecules: quantum modification of π-spacer and acceptor. J Iran Chem Soc 14:2041–2054. https://doi.org/10.1007/s13738-017-1141-x

    Article  CAS  Google Scholar 

  34. Kim T, Lee K (2015) D-π-A conjugated molecules for optoelectronic applications. Macromol Rapid Commun 36:943–958. https://doi.org/10.1002/marc.201400749

    Article  CAS  PubMed  Google Scholar 

  35. Dennington R, Keith T, Millam JM (2009) GaussView version 5, SemichemInc., Shawnee Mission, KS

  36. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  37. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170. https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  38. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  39. Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128:084106. https://doi.org/10.1063/1.2834918

    Article  CAS  PubMed  Google Scholar 

  40. Zhao Y, Truhlar DG (2006) Density functional for spectroscopy: no long-range self-interaction error, good performance for Rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. J Phys Chem A 110:13126–13130. https://doi.org/10.1021/jp066479k

    Article  CAS  PubMed  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JJE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  42. Hadji D, Bousmaha K, Boumediene M (2023) NLO azo compounds with sulfonamide groups: a theoretical investigation. J Indian Chem Soc 100:101062. https://doi.org/10.1016/j.jics.2023.101062

    Article  CAS  Google Scholar 

  43. Bishop DM, Norman P (2001) Chapter 1 -Calculations of dynamic hyperpolarizabilities for small and medium-sized molecules. Handb Adv Electron Photonic Mater Devices 9:1–62. https://doi.org/10.1016/B978-012513745-4/50072-X

  44. Bersohn R, Yoh-Han PAO, Frisch HL (1966) Double-quantum light scattering by molecules. J Chem Phys 45:3184–3198. https://doi.org/10.1063/1.1728092

    Article  CAS  Google Scholar 

  45. Almashal F, Jabar AM, Dhumad AM (2018) Synthesis, characterization and DFT computational studies of new heterocyclic azo compounds. Eur J Chem 9:84–88. https://doi.org/10.5155/eurjchem.9.2.84-88.1683

    Article  CAS  Google Scholar 

  46. Technology D, Technology C, Marg NP, Mh M (2018) Substituent effects on linear and nonlinear optical properties of fluorescent (E)-2-(4-halophenyl)-7-arlstyrylimidazo[1,2-A] pyridine: spectroscopic and computational methods. Phys Sci Rev 4:20180032. https://doi.org/10.1515/psr-2018-0032

    Article  Google Scholar 

  47. Tessore F, Di Carlo G, Forni A, Righetto S, Limosani F, Biroli O A (2020) Second order nonlinear optical properties of 4-styrylpyridines axially coordinated to A4 ZnII porphyrins: a comparative experimental and theoretical investigation. Inorganics 8:45. https://doi.org/10.3390/inorganics8080045

    Article  CAS  Google Scholar 

  48. Guezguez I, Ayadi A, Ordon K, Iliopoulos K, Branzea DG, Migalska-Zalas A, Makowska-Janusik M, El-Ghayoury A, Sahraoui B (2014) Zinc induced a dramatic enhancement of the nonlinear optical properties of an azo-based iminopyridine ligand. J Phys Chem C 118:7545–7553. https://doi.org/10.1021/jp412204f

    Article  CAS  Google Scholar 

  49. Haroon M, Khalid M, Shafiq Z, Khan MU, Janjua MRSA (2021) High-throughput calculations and experimental insights towards the development of potent thiazoline based functional materials. Mater Today Commun 27:102485. https://doi.org/10.1016/j.mtcomm.2021.102485

    Article  CAS  Google Scholar 

  50. Prabavathi N, Nayaki NS, Reddy BV (2015) Molecular structure, vibrational spectra, natural bond orbital and thermodynamic analysis of 3,6-dichloro-4-methylpyridazine and 3,6-dichloropyridazine-4-carboxylic acid by dft approach. Spectrochim Acta A Mol Biomol Spectrosc 136B:1134–1148. https://doi.org/10.1016/j.saa.2014.09.137

    Article  CAS  Google Scholar 

  51. Abdel-Kader NS, Abdel-Latif SA, El-Ansary AL, Sayed AG (2021) Spectroscopic studies, density functional theory calculations, non-linear optical properties, biological activity of 1-hydroxy-4-((4-(N-(pyrimidin-2-yl)sulfamoyl)phenyl)diazenyl)-2-naphthoic acid and its chelates with nickel (II), copper (II), zinc (II) metal ions. J Mol Struct 1223:129203. https://doi.org/10.1016/j.molstruc.2020.129203

    Article  CAS  Google Scholar 

  52. Shahid M, Salim M, Khalid M, Tahir MN, Khan MU, Braga AAC (2018) Synthetic, XRD, non-covalent interactions and solvent dependent nonlinear optical studies of Sulfadiazine-Ortho-Vanillin Schiff base: (E)-4-((2-hydroxy-3-methoxy-benzylidene) amino)-N-(pyrimidin-2-yl)benzene-sulfonamide. J Mol Struct 1161:66–75. https://doi.org/10.1016/j.molstruc.2018.02.043

    Article  CAS  Google Scholar 

  53. Özdemir N, Dayan S, Dayan O, Dinçer M, Kalaycıoğlu NÖ (2013) Experimental and molecular modeling investigation of (E)-N-{2-[(2-hydroxybenzylidene)amino]phenyl}benzenesulfonamide. Mol Phys 111:707–723. https://doi.org/10.1080/00268976.2012.742209

    Article  CAS  Google Scholar 

  54. Chandran A, Varghese HT, Mary YS, Panicker CY, Manojkumar TK, Van Alsenoy C, Rajendran G (2012) FT-IR, FT-Raman and computational study of (E)-N-carbamimidoyl-4-((4-methoxybenzylidene)amino)benzenesulfonamide. Spectrochim Acta A Mol Biomol Spectrosc 92:84–90. https://doi.org/10.1016/j.saa.2012.02.030

    Article  CAS  PubMed  Google Scholar 

  55. Procházková E, Čechová L, Kind J, Janeba Z, Thiele CM, Dračínský M (2018) Photoswitchable intramolecular hydrogen bonds in 5-phenylazopyrimidines revealed by in situ irradiation NMR spectroscopy. Chem - Eur J 24:492–498. https://doi.org/10.1002/chem.201705146

    Article  CAS  PubMed  Google Scholar 

  56. Gieseking B, Jäck B, Preis E, Jung S, Forster M, Scherf U, Deibel C, Dyakonov V (2012) Excitation dynamics in low band gap donor–acceptor copolymers and blends. Adv Energy Mater 2:1477–1482. https://doi.org/10.1002/aenm.201200304

    Article  CAS  Google Scholar 

  57. Bensafi T, Hadji D, Yahiaoui A, Argoub K, Hachemaoui A, Kenane A, Baroudi B, Toubal K, Djafri A, Benkouider AM (2021) Synthesis, characterization and DFT calculations of linear and NLO properties of novel (Z)-5-benzylidene-3-N(4-methylphenyl)-2-thioxothiazolidin-4-one. J Sulfur Chem 42:645–663. https://doi.org/10.1080/17415993.2021.1951729

    Article  CAS  Google Scholar 

  58. Benmohammed A, Hadji D, Guendouzi A, Mouchaal Y, Djafri A, Khelil A (2021) Synthesis, characterization, linear and NLO properties of novel N-(2,4-dinitrobenzylidene)-3-Chlorobenzenamine Schiff Base: combined experimental and DFT calculations. J Electron Mater 50:5282–5293. https://doi.org/10.1007/s11664-021-09046-9

    Article  CAS  Google Scholar 

  59. Hadji D (2021) Phosphates branching effect on the structure, linear and NLO properties of linear phosphazenes. Mater Chem Phys 262:124280. https://doi.org/10.1016/j.matchemphys.2021.124280

    Article  CAS  Google Scholar 

  60. Boukabene M, Brahim H, Hadji D, Guendouzi A (2020) Theoretical study of geometric, optical, nonlinear optical, UV–Vis spectra and phosphorescence properties of iridium(III) complexes based on 5-nitro-2-(2′,4′-difluorophenyl)pyridyl. Theor Chem Acc 139:47. https://doi.org/10.1007/s00214-020-2560-9

    Article  CAS  Google Scholar 

  61. Kenane A, Hadji D, Argoub K, Yahiaoui A, Hachemaoui A, Toubal K, Benkouider AM, Rasoga O, Stanculescu A, Galca A (2023) Efficient NLO materials based on poly(ortho-anisidine) and polyaniline: a quantum chemical study. J Electron Mater 52:530–539. https://doi.org/10.1007/s11664-022-10022-0

    Article  CAS  Google Scholar 

  62. Hadji D, Rahmouni A, Hammoutène D, Zekri O (2019) First theoretical study of linear and nonlinear optical properties of diphenyl ferrocenyl butene derivatives. J Mol Liq 286:110939. https://doi.org/10.1016/j.molliq.2019.110939

    Article  CAS  Google Scholar 

  63. Haroon M, Janjua MRSA (2022) Exploring the effect of end-capped modifications of carbazole-based fullerene-free acceptor molecules for high-performance indoor organic solar cell applications. J Comput Electron 21:40–51. https://doi.org/10.1007/s10825-021-01838-w

    Article  CAS  Google Scholar 

  64. Irfan A, Hussien M, Mehboob MY, Aziz A, Janjua MRSA (2022) Learning from fullerenes and predicting for Y6: machine learning and high-throughput screening of small molecule donors for organic solar cells. Energy Technol 10:2101096. https://doi.org/10.1002/ente.202101096

    Article  CAS  Google Scholar 

  65. Mahmood R, Janjua MRSA, Jamil S (2017) DFT molecular simulation for design and effect of core bridging acceptors (BA) on NLO response: first theoretical framework to enhance nonlinearity through BA. J Clust Sci 28:3175–3183. https://doi.org/10.1007/s10876-017-1287-9

    Article  CAS  Google Scholar 

  66. Janjua MRSA (2017) First theoretical framework of di-substituted donor moieties of triphenylamine and carbazole for NLO properties: quantum paradigms of interactive molecular computation. Mol Simul 43:1539–1545. https://doi.org/10.1080/08927022.2017.1332413

    Article  CAS  Google Scholar 

  67. Merouane A, Mostefai A, Hadji D, Rahmouni A, Bouchekara M, Ramdani A, Taleb S (2020) Theoretical insights into the static chemical reactivity and NLO properties of some conjugated carbonyl compounds: case of 5-aminopenta-2,4-dienal derivatives. Monatshefte Für Chemie - Chem Mon 151:1095–1109. https://doi.org/10.1007/s00706-020-02653-y

    Article  CAS  Google Scholar 

  68. Hadji D, Brahim H (2018) Structural, optical and nonlinear optical properties and TD-DFT analysis of heteroleptic bis-cyclometalated iridium(III) complex containing 2-phenylpyridine and picolinate ligands. Theor Chem Acc 137:180. https://doi.org/10.1007/s00214-018-2396-8

    Article  CAS  Google Scholar 

  69. Gheribi R, Hadji D, Ghallab R, Medjani M, Benslimane M, Trifa C, Dénès G, Merazig H (2022) Synthesis, spectroscopic characterization, crystal structure, Hirshfeld surface analysis, linear and NLO properties of new hybrid compound based on tin fluoride oxalate and organic amine molecule (C12N2H9)2[SnF2(C2O4)2]2H2O. J Mol Struct 1248:131392. https://doi.org/10.1016/j.molstruc.2021.131392

    Article  CAS  Google Scholar 

  70. Baroudi B, Argoub K, Hadji D, Benkouider AM, Toubal K, Yahiaoui A, Djafri A (2020) Synthesis and DFT calculations of linear and nonlinear optical responses of novel 2-thioxo-3-N, (4-methylphenyl) thiazolidine-4 one. J Sulfur Chem 41:310–325. https://doi.org/10.1080/17415993.2020.1736073

    Article  CAS  Google Scholar 

  71. Basharat M, Hadji D (2022) Theoretical insights into the nonlinear optical properties of cyclotriphosphazene (P3N3Cl6), tris(4–hydroxyphenyl) ethane and their various inorganic–organic hybrid derivatives. J Mater Sci 57:6971–6987. https://doi.org/10.1007/s10853-022-07088-w

    Article  CAS  Google Scholar 

  72. Hadji D, Benmohammed A, Mouchaal Y, Djafri A (2023) Synthesis and characterization of novel thiosemicarbazide for nonlinear optical applications: combined experimental and theoretical study. Rev Roum Chim 68:463–471. https://doi.org/10.33224/rrch.2023.68.9.07

    Article  Google Scholar 

  73. Bekki Y, Hadji D, Guendouzi A, Houari B, Elkeurti M (2022) Linear and nonlinear optical properties of anhydride derivatives: a theoretical investigation. Chem Data Collect 37:100809. https://doi.org/10.1016/j.cdc.2021.100809

    Article  CAS  Google Scholar 

  74. Dhaef HK, Al-Asadi RH, Shenta AA, Mohammed MK (2021) Novel bis maleimide derivatives containing azo group: synthesis, corrosion inhibition, and theoretical study. Indones J Chem 21:1212. https://doi.org/10.22146/ijc.64614

    Article  CAS  Google Scholar 

  75. Hadji D, Rahmouni A (2015) Theoretical study of nonlinear optical properties of some azoic dyes. Mediterr J Chem 4:185–192. https://doi.org/10.13171/mjc.4.4.2015.15.07.22.50/hadji

    Article  CAS  Google Scholar 

  76. Hadji D, Haddad B, Brandán SA, Panja SK, Paolone A, Drai M, Villemin D, Bresson S, Rahmouni M (2020) Synthesis, NMR, Raman, thermal and nonlinear optical properties of dicationic ionic liquids from experimental and theoretical studies. J Mol Struct 1220:128713. https://doi.org/10.1016/j.molstruc.2020.128713

    Article  CAS  Google Scholar 

  77. Hadji D, Champagne B (2019) First principles investigation of the polarizability and first hyperpolarizability of anhydride derivatives. Chem Africa 2:443. https://doi.org/10.1007/s42250-019-00060-3

    Article  CAS  Google Scholar 

  78. Hadji D, Bensafi T (2024) Deeper insights on the nonlinear optical properties of O-acylated pyrazoles. J Electron Mater 53:1868–1883. https://doi.org/10.1007/s11664-024-10954-9

    Article  CAS  Google Scholar 

  79. Adamo C, Cossi M, Scalmani G, Barone V (1999) Accurate static polarizabilities by density functional theory: assessment of the PBE0 model. Chem Phys Lett 307:265–271. https://doi.org/10.1016/S0009-2614(99)00515-1

    Article  CAS  Google Scholar 

  80. Bensafi T, Hadji D (2024) Quantum chemical exploration of linear and nonlinear optical characteristics in C-acylated pyrazoles. Opt Quantum Electron (Accepted paper)

  81. Cicač-Hudi M, Feil CM, Birchall N, Nieger M, Gudat D (2022) A PH-functionalized dicationic bis(imidazolio)diphosphine. Dalton Trans 51:998–1007. https://doi.org/10.1039/d1dt03978d

    Article  CAS  PubMed  Google Scholar 

  82. Ejuh GW, Fonkem C, Tadjouteu Assatse Y, Yossa Kamsi RA, Nya T, Ndukum LP, Ndjaka JMB (2020) Study of the structural, chemical descriptors and optoelectronic properties of the drugs hydroxychloroquine and azithromycin. Heliyon 6:04647. https://doi.org/10.1016/j.heliyon.2020.e04647

    Article  CAS  Google Scholar 

  83. Cherif FY, Hadji D, Benhalima N (2023) Molecular structure, linear, and nonlinear optical properties of piperazine-1,4-diium bis 2,4,6-trinitrophenolate: a theoretical investigation. Phys Chem Res 11:33–48. https://doi.org/10.22036/pcr.2022.330752.2035

    Article  CAS  Google Scholar 

  84. Mohsenpour Z, Shakerzadeh E, Zare M (2017) Quantum chemical description of formaldehyde (HCHO), acetaldehyde (CH3CHO) and propanal (CH3CH2CHO) pollutants adsorption behaviors onto the bowl-shaped B36 nanosheet. Adsorption 23:1041–1053. https://doi.org/10.1007/s10450-017-9913-2

    Article  CAS  Google Scholar 

  85. Hadji D, Rahmouni A (2016) Molecular structure, linear and nonlinear optical properties of some cyclic phosphazenes: a theoretical investigation. J Mol Struct 1106:343–351. https://doi.org/10.1016/j.molstruc.2015.10.033

    Article  CAS  Google Scholar 

  86. Nourai NEH, Sebih F, Hadji D, Allal FZ, Dib S, Kambouche N, Rolland V, Bellahouel-Benzine S (2024) Nonlinear optical and antimicrobial activity of N-acyl glycine derivatives. J Mol Liq 398:124260. https://doi.org/10.1016/j.molliq.2024.124260

    Article  CAS  Google Scholar 

  87. Cunha S, Rodovalho W, Azevedo NR, de O M. Mendonça, Lariucci C, Vencato I (2002) The Michael reaction of enaminones with N-(p-tolyl)-maleimide: synthesis and structural analysis of succinimide-enaminones. J Braz Chem Soc 13:629–634. https://doi.org/10.1590/S0103-50532002000500014

  88. Cojocaru C, Airinei A, Fifere N (2013) Molecular structure and modeling studies of azobenzene derivatives containing maleimide groups. Springerplus 2:586. https://doi.org/10.1186/2193-1801-2-586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Haroon M, Janjua MRSA (2021) High-throughput designing and investigation of D-A−π–A-type donor materials for potential application in greenhouse-integrated solar cells. Energy Fuels 35:12461–12472. https://doi.org/10.1021/acs.energyfuels.1c01726

    Article  CAS  Google Scholar 

  90. Mehboob MY, Hussain R, Adnan M, Saira UF, Irshad Z, Janjua MRSA (2022) Theoretical modelling of novel indandione-based donor molecules for organic solar cell applications. J Phys Chem Solids 162:110508. https://doi.org/10.1016/j.jpcs.2021.110508

    Article  CAS  Google Scholar 

  91. Janjua MRSA (2021) How does bridging core modification alter the photovoltaic characteristics of triphenylamine-based hole transport materials? Theoretical Understanding and Prediction. Chem - A Eur J 27:4197–4210. https://doi.org/10.1002/chem.202004299

    Article  CAS  Google Scholar 

  92. Janjua MRSA (2022) Photovoltaic properties and enhancement in near-infrared light absorption capabilities of acceptor materials for organic solar cell applications: a quantum chemical perspective via DFT. J Phys Chem Solids 171:110996. https://doi.org/10.1016/j.jpcs.2022.110996

    Article  CAS  Google Scholar 

  93. Janjua MRSA (2022) All-small-molecule organic solar cells with high fill factor and enhanced open-circuit voltage with 18.25% PCE: physical insights from quantum chemical calculations. Spectrochim Acta A Mol Biomol Spectrosc 279:121487. https://doi.org/10.1016/j.saa.2022.121487

    Article  CAS  PubMed  Google Scholar 

  94. Yadav SB, Taware S, Sreenath MC, Chitrambalam S, Joe IH, Sekar N (2020) Experimental and theoretical investigation of linear and nonlinear optical properties of ethyl-3-hydroxy-2-napthoate azo dyes by solvatochromic, computational aspects, and Z-scan technique. J Phys Org Chem 33:1–20. https://doi.org/10.1002/poc.4050

    Article  CAS  Google Scholar 

  95. mohammed kadam Z, Jeber RA, Ali AH (2021) Azo dyes on the ligand(5-MeTAQ) thin films for dye sensitized solar cells applications. J Phys Conf Ser 1999:012006. https://doi.org/10.1088/1742-6596/1999/1/012006

  96. Gester R, Torres A, Bistafa C, Araújo RS, da Silva TA, Manzoni V (2020) Theoretical study of a recently synthesized azo dyes useful for OLEDs. Mater Lett 280:128535. https://doi.org/10.1016/j.matlet.2020.128535

    Article  CAS  Google Scholar 

  97. Shimizu T, Tanifuji N, Yoshikawa H (2022) Azo compounds as active materials of energy storage systems. Angew Chemie Int Ed 61:202206093. https://doi.org/10.1002/anie.202206093

    Article  CAS  Google Scholar 

  98. Al-Mudhaffer MF, Al-Ahmad AY, Ali Hassan QM, Emshary CA (2016) Optical characterization and all-optical switching of benzenesulfonamide azo dye. Optik 127:1160–1166. https://doi.org/10.1016/j.ijleo.2015.08.176

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The investigation was supported by the Algerian Ministry of Higher Education and Scientific Research as well as the directorate general for scientific research and technological development.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Djebar Hadji: data curation, writing—original draft preparation, visualization, investigation, software, validation, supervision.

Benamar Baroudi: conceptualization, methodology, writing—reviewing and editing.

Toufik Bensafi: conceptualization, methodology, writing—reviewing and editing.

Corresponding author

Correspondence to Djebar Hadji.

Ethics declarations

Ethical approval

None.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is the author’s original work, which has not been previously published elsewhere. All authors have been personally and actively involved in substantial work leading to the paper and will take public responsibility for its content. The paper properly credits the meaningful contributions of all the co-authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 41 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadji, D., Baroudi, B. & Bensafi, T. Nonlinear optical properties of azo sulfonamide derivatives. J Mol Model 30, 117 (2024). https://doi.org/10.1007/s00894-024-05915-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05915-2

Keywords

Navigation