Skip to main content

Advertisement

Log in

Synthesis, Characterization, Linear and NLO Properties of Novel N-(2,4-Dinitrobenzylidene)-3-Chlorobenzenamine Schiff Base: Combined Experimental and DFT Calculations

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study entails two parts: The first reports on the synthesis of a novel N-(2,4-dinitrobenzylidene)-3-chlorobenzenamine Schiff base and its analysis by ultraviolet–visible (UV–vis) spectroscopy, 1H and 13C nuclear magnetic resonance (NMR), and infrared (IR) spectroscopy. The UV–vis measurements showed absorption between 264 and 304 nm. The experimental optical gap energy was obtained using the Tauc method, and was estimated to be around 3.1 eV. On the other hand, we calculated optical gap energy using the M06-2X level, which gave a value of 3.20 eV, proving to be very close to the experimental one. The second part of this study focused on the dipole moment, dynamic linear and dynamic nonlinear optical (NLO) properties of this new compound. Theoretical calculations using density functional theory (DFT) were used to optimize the geometry, and to calculate this compound's dynamic polarizability and dynamic first-order hyperpolarizability. For the polarizability, we studied the mean polarizability \( \left\langle \alpha \right\rangle \) and the polarizability anisotropy \(\Delta \alpha\). To elucidate the correlation between the molecular architecture of this Schiff base and the dynamic first hyperpolarizability, the dynamic behavior of the hyper-Rayleigh scattering (HRS) first hyperpolarizability \(\beta _{{{\text{HRS}}}}\), the dynamic electric field-induced second harmonic generation (EFISHG) \(\beta _{{//}}\), and the depolarization ratios (DR) were calculated and analyzed in detail. Moreover, a correlation of \(\beta _{{{\text{HRS}}}}\) with the optical band gap and between the \(\beta _{{{\text{HRS}}}}\) and \(\beta _{{//}}\) was found. Based on these results, we can conclude that the synthesized Schiff base is a good candidate for the design of organic NLO materials.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.P. Costes, J.F. Lamere, C. Lepetit, P.G. Lacroix, and F. Dahan, Inorg. Chem. 44, 1973 (2005). https://doi.org/10.1021/ic048578n.

    Article  CAS  Google Scholar 

  2. T.T. Tidwell, Angew. Chemie-Int. Ed. 47, 1016 (2008). https://doi.org/10.1002/anie.200702965.

    Article  CAS  Google Scholar 

  3. S. Kajal, S. Bala, N. Kamboj, V. Sharma, and N. Saini, J. Catal. 2013, 1 (2013). https://doi.org/10.1155/2013/893512.

    Article  CAS  Google Scholar 

  4. S.K. Bharti, G. Nath, and S.K. Singh, Eur. J. Med. Chem. 45, 651 (2010). https://doi.org/10.1016/j.ejmech.2009.11.008.

    Article  CAS  Google Scholar 

  5. Y. Li, C.P. Zhao, H.P. Ma, M.Y. Zhao, Y.R. Xue, and X.M. Wang, Bioorg. Med. Chem. 21, 3120 (2013). https://doi.org/10.1016/j.bmc.2013.03.023.

    Article  CAS  Google Scholar 

  6. J.A. Makawana, C.B. Sangani, L. Lin, and H.L. Zhu, Bioorg. Med. Chem. Lett. 24, 1734 (2014). https://doi.org/10.1016/j.bmcl.2013.09.086.

    Article  CAS  Google Scholar 

  7. E.L. Chazin, P.S. Sanches, E.B. Lindgren, W.T. Vellasco, L.C. Pinto, R.M. Burbano, J.D. Yoneda, K.Z. Leal, C.R. Gomes, and J.L. Wardell, Molecules 20, 1968 (2015). https://doi.org/10.3390/molecules20021968.

    Article  CAS  Google Scholar 

  8. S.F. Barbuceanu, D.C. Ilies, G. Saramet, V. Uivarosi, C. Draghici, and V. Radulescu, Int. J. Mol. Sci. 15, 10908 (2014). https://doi.org/10.3390/ijms150610908.

    Article  CAS  Google Scholar 

  9. K.M. Khan, Z. Shah, V.U. Ahmad, M. Khan, M. Taha, F. Rahim, H. Jahun, S. Perveen, and M.I. Choudhary, Med. Chem. 7, 572 (2011). https://doi.org/10.2174/157340611797928415.

    Article  CAS  Google Scholar 

  10. K.M. Khan, F. Rahim, N. Ambreen, M. Taha, M. Khan, H. Jahan, U. Najeebullah, A. Shaikh, S. Iqbal, S. Perveen, and M.I. Choudhary, Med. Chem. 9, 588 (2013). https://doi.org/10.2174/1573406411309040013.

    Article  CAS  Google Scholar 

  11. A. Subashini, G. Bhagavannarayana, and K. Ramamurthi, Spectroc. Acta A. 78, 935 (2011). https://doi.org/10.1016/j.saa.2012.07.045.

    Article  CAS  Google Scholar 

  12. Y. Jia and J. Li, Chem. Rev. 115, 1597 (2015). https://doi.org/10.1021/cr400559g.

    Article  CAS  Google Scholar 

  13. D. Verma, R. Dash, K.S. Katti, D.L. Schulz, and A.N. Caruso, Spectroc. Acta A 70, 1180 (2008). https://doi.org/10.1016/j.saa.2007.10.050.

    Article  CAS  Google Scholar 

  14. S. Kundu, A.K. Pramanik, A.S. Mondal, and T.K. Mondal, J. Mol. Struct. 1116, 1 (2016). https://doi.org/10.1016/j.molstruc.2016.03.013.

    Article  CAS  Google Scholar 

  15. P.A. Gale and C. Caltagirone, Coord. Chem. Rev. 354, 2 (2018). https://doi.org/10.1016/j.ccr.2017.05.003.

    Article  CAS  Google Scholar 

  16. M. Barwiolek, M. Babinska, A. Kozakiewicz, A. Wojtczak, A. Kaczmarek-Kedziera, and E. Szlyk, Polyhedron 124, 12 (2017). https://doi.org/10.1016/j.poly.2016.12.011.

    Article  CAS  Google Scholar 

  17. J. Cheng, K. Wei, X. Ma, X. Zhou, and H. Xiang, J. Phys. Chem. C 117, 16552 (2013). https://doi.org/10.1021/jp403750q.

    Article  CAS  Google Scholar 

  18. G.A. Evingür and Ö. Pekcan, Comp. Struct. 183, 212 (2018). https://doi.org/10.1016/j.compstruct.2017.02.058.

    Article  Google Scholar 

  19. K.L. Chopra, S. Major, and D.K. Pandya, Thin Solid Films 102, 1 (1983). https://doi.org/10.1016/0040-6090(83)90256-0.

    Article  CAS  Google Scholar 

  20. Y. Mouchaal, A. Enesca, C. Mihoreanu, A. Khelil, and A. Duta, Mater. Sci. Eng. B. 199, 22 (2015). https://doi.org/10.1016/J.MSEB.2015.05.002.

    Article  CAS  Google Scholar 

  21. R.M. Silverstein, F.X. Webster, D.J. Kiemle, and D.L. Bryce, Spectrometric Identification of Organic Compounds, 8th ed., (Washington, D.C.: ACS Publications, 2014), p. 464.

    Google Scholar 

  22. R. Ramesh and S. Maheswaran, J. Inorg. Biochem. 96, 457 (2003). https://doi.org/10.1016/s0162-0134(03)00237-x.

    Article  CAS  Google Scholar 

  23. J.R. Zamian and E.R. Dockal, Transit. Metal. Chem. 21, 370 (1996). https://doi.org/10.1007/bf00139036.

    Article  CAS  Google Scholar 

  24. M. Montazerozohori and S.A. Musavi, J. Coord. Chem. 61, 3934 (2008). https://doi.org/10.1080/00958970802162723.

    Article  CAS  Google Scholar 

  25. M. Montazerozohori, S. Joohari, and S.A. Musavi, Spectroc. Acta A. 73, 231 (2009). https://doi.org/10.1016/j.saa.2009.02.023.

    Article  CAS  Google Scholar 

  26. G. Turkoglu, H. Berber, H. Dal, and C. Ogretir, Spectroc. Acta A. 79, 1573 (2011). https://doi.org/10.1016/j.saa.2011.04.089.

    Article  CAS  Google Scholar 

  27. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.S.N. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09 (Wallingford CT: Gaussian Inc, 2009).

    Google Scholar 

  28. A. Jezierska-Mazzarello, R. Vuilleumier, J.J. Panek, and G. Ciccotti, J. Phys. Chem. B 114, 242 (2010). https://doi.org/10.1021/jp903501m.

    Article  CAS  Google Scholar 

  29. N. Acar, C. Selçuki, and E. Coşkun, DFT and TDDFT investigation of the Schiff base formed by tacrine and saccharin J. Mol. Model. 23, 17 (2017). https://doi.org/10.1007/s00894-016-3195-6.

    Article  CAS  Google Scholar 

  30. R. Dennington, T. Keith, and J.M. Millam, GaussView version 5 (Shawnee: SemichemInc, 2009).

    Google Scholar 

  31. A.D. Becke, Phys. Rev. A 38, 3098 (1988). https://doi.org/10.1103/PhysRevA.38.3098.

    Article  CAS  Google Scholar 

  32. F. Tran, P. Blaha, K. Schwarz, and P. Novák, Phys. Rev. B 74, 155108 (2006). https://doi.org/10.1103/PhysRevB.74.155108.

    Article  CAS  Google Scholar 

  33. T. Yanai, D.P. Tew, and N.C. Handy, Chem. Phys. Lett. 393, 51 (2004). https://doi.org/10.1016/j.cplett.2004.06.011.

    Article  CAS  Google Scholar 

  34. Y. Zhao and D.G. Truhlar, Theor. Chem. Acc. 120, 215 (2008). https://doi.org/10.1007/s00214-007-0310-x.

    Article  CAS  Google Scholar 

  35. Y. Zhao and D.G. Truhlar, J. Phys. Chem. A 110, 13126 (2006). https://doi.org/10.1021/jp066479k.

    Article  CAS  Google Scholar 

  36. D. Hadji and A. Rahmouni, J. Mol. Struct. 1106, 343 (2016). https://doi.org/10.1016/j.molstruc.2015.10.033.

    Article  CAS  Google Scholar 

  37. D. Hadji and B. Champagne, Chem. Afr. 2, 443 (2019). https://doi.org/10.1007/s42250-019-00060-3.

    Article  CAS  Google Scholar 

  38. R. Bersohn, Y.H. Pao, and H.L. Frisch, J. Chem. Phys. 45, 3184 (1966). https://doi.org/10.1063/1.1728092.

    Article  CAS  Google Scholar 

  39. V. Hadigheh-Rezvan and B. Pilevar-Maleki, Der Chem. Sinica. 9, 544 (2018).

    CAS  Google Scholar 

  40. D. Hadji and H. Brahim, Theor. Chem. Acc. 137, 180 (2018). https://doi.org/10.1007/s00214-018-2396-8.

    Article  CAS  Google Scholar 

  41. R. Kumari, A. Varghese, and L. George, J. Fluoresc. 27, 151 (2017). https://doi.org/10.1007/s10895-016-1942-9.

    Article  CAS  Google Scholar 

  42. D.S. Sabirov, RSC Adv. 3, 9430 (2013). https://doi.org/10.1039/C3RA42498G.

    Article  Google Scholar 

  43. C. Adamo, M. Cossi, and V.B. Scalmani, Chem. Phys. Lett. 307, 265 (1999). https://doi.org/10.1016/S0009-2614(99)00515-1.

    Article  CAS  Google Scholar 

  44. A.L. Hickey and C.N. Rowley, J. Phys. Chem. A 118, 3678 (2014). https://doi.org/10.1021/jp502475e.

    Article  CAS  Google Scholar 

  45. I. Paidarová and S.P.A. Sauer, AIP Conf. Proc. 1504, 695 (2012). https://doi.org/10.1063/1.4771790.

    Article  CAS  Google Scholar 

  46. H.S. Nalwa, Handbook of organic conductive molecules and polymers (Weinhein: Wiley, 1997).

    Google Scholar 

  47. S.A. Khan, M.A.N. Razvi, A.H. Bakry, S.M. Afzal, A.M. Asiri, and S.A. El-Daly, Spectroc. Acta Part A 137, 1100 (2015). https://doi.org/10.1016/j.saa.2014.08.065.

    Article  CAS  Google Scholar 

  48. D. Hadji, Mater. Chem. Phys. (2021). https://doi.org/10.1016/j.matchemphys.2021.124280.

    Article  Google Scholar 

  49. D. Hadji, A. Rahmouni, D. Hammoutène, and O. Zekri, J. Mol. Liq. 286, 110939 (2019). https://doi.org/10.1016/j.molliq.2019.110939.

    Article  CAS  Google Scholar 

  50. A. Merouane, A. Mostefai, D. Hadji, A. Rahmouni, M. Bouchekara, A. Ramdani, and S. Taleb, Monatsh. Chem. 151, 1095 (2020). https://doi.org/10.1007/s00706-020-02653-y.

    Article  CAS  Google Scholar 

  51. D. Hadji, B. Haddad, S.A. Brandán, S.K. Panja, A. Paolonee, M. Drai, D. Villemin, S. Bresson, and M. Rahmouni, J. Mol. Struct. 1220, 128713 (2020). https://doi.org/10.1016/j.molstruc.2020.128713.

    Article  CAS  Google Scholar 

  52. M. Boukabene, H. Brahim, D. Hadji, and A. Guendouzi, Theor. Chem. Acc. 139, 47 (2020). https://doi.org/10.1007/s00214-020-2560-9.

    Article  CAS  Google Scholar 

  53. N.D. Ojo, R.W. Krause, and N.O. Obi-Egbedi, Comput. Theor. Chem. 1192, 113050 (2020). https://doi.org/10.1016/j.comptc.2020.113050.

    Article  CAS  Google Scholar 

  54. J. Kumar, N. Kumar, and P.K. Hota, RSC Adv. 10, 28213 (2020). https://doi.org/10.1039/D0RA05405D.

    Article  CAS  Google Scholar 

  55. D. Hadji and A. Rahmouni, Med. J. Chem. 4, 185 (2015). https://doi.org/10.13171/mjc.4.4.2015.15.07.22.50/hadji.

    Article  CAS  Google Scholar 

  56. B.B. Ivanova and M. Spiteller, J. Incl. Phenom. Macrocycl. Chem. 75, 211 (2013). https://doi.org/10.1007/s10847-012-0163-3.

    Article  CAS  Google Scholar 

  57. B. Li, G. Huang, L. Shi, W. Liu, B. Chen, and X. Wu, Indian J. Chem. 42B, 2643 (2003).

    CAS  Google Scholar 

  58. P.G. Lacroix, F. Averseng, I. Malfant, and K. Nakatani, Inorg. Chim. Acta 357, 3825 (2004). https://doi.org/10.1016/j.ica.2004.03.004.

    Article  CAS  Google Scholar 

  59. A. Dolgonos, T.O. Mason, and K.R. Poeppelmeier, J. Solid. State Chem. 240, 43 (2016). https://doi.org/10.1016/j.jssc.2016.05.010.

    Article  CAS  Google Scholar 

  60. B.D. Viezbicke, S. Patel, B.E. Davis, and D.P. Birnie III., Phys. Status Solidi. 252, 1700 (2015). https://doi.org/10.1002/pssb.201552007.

    Article  CAS  Google Scholar 

  61. B. Baroudi, K. Argoub, D. Hadji, A.M. Benkouider, K. Toubal, A. Yahiaoui, and A. Djafri, J. Sulfur Chem. 41, 310 (2020). https://doi.org/10.1080/17415993.2020.1736073.

    Article  CAS  Google Scholar 

  62. S. Muhammad, H. Xu, Z. Su, K. Fukuda, R. Kishi, Y. Shigeta, and M. Nakano, Dalton Trans. 42, 15053 (2013). https://doi.org/10.1039/c3dt51331a.

    Article  CAS  Google Scholar 

  63. M. Targema, N.O. Obi-Egbedi, and M.D. Adeoye, Comput. Theor. Chem. 1012, 47 (2013). https://doi.org/10.1016/j.comptc.2013.02.020.

    Article  CAS  Google Scholar 

  64. İ Bozkurt, M. Evecen, H. Tanak, and E. Ağar, J. Mol. Struct. 1197, 9 (2019). https://doi.org/10.1016/j.molstruc.2019.07.034.

    Article  CAS  Google Scholar 

  65. P.T. Taslı, A. Bayrakdar, O.O. Karakus, H.H. Kart, and Y. Koc, Opt. Spectrosc. 119, 467 (2015). https://doi.org/10.1134/S0030400X15090222.

    Article  CAS  Google Scholar 

  66. S. Vijayalakshmi and S. Kalyanaraman, Opt. Mater. 35, 440 (2013). https://doi.org/10.1016/j.optmat.2012.09.013.

    Article  CAS  Google Scholar 

  67. H. Unver and A.T.N. Durlu, Z. Naturforsch. 65B, 185 (2014). https://doi.org/10.1515/znb-2010-0215.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Algerian Ministry of Higher Education and Scientific Research as well as the General Directorate of Scientific Research and Technological Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djebar Hadji.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benmohammed, A., Hadji, D., Guendouzi, A. et al. Synthesis, Characterization, Linear and NLO Properties of Novel N-(2,4-Dinitrobenzylidene)-3-Chlorobenzenamine Schiff Base: Combined Experimental and DFT Calculations. J. Electron. Mater. 50, 5282–5293 (2021). https://doi.org/10.1007/s11664-021-09046-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09046-9

Keywords

Navigation