Skip to main content
Log in

Photophysical properties of four-membered BN3 heterocyclic compounds: theoretical insights

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Understanding the photochemistry of boron nitrogen (BN)-containing compounds is an important aspect to enhance the various optical and electronic applications. In this work, we have explored the structure, bonding, reactivity, electronic absorption (UV–Vis), and light harvesting efficiency (LHE) of a series of BN3 ring and open-chain systems. The frontier molecular orbitals (FMO) analysis found that ring systems have a low HOMO–LUMO energy gap as compared to the open-chain systems which insinuates the feasibility of ring systems in the optoelectronic materials. Also, the molecular electrostatic potential (MEP) maps have been computed to pursue the electrophilic and nucleophilic sites available at the surface of the compound. Interestingly, we have found that the open-chain compounds show more molecular charge distribution range rather than the ring compounds. The investigation of photophysical properties showed that the UV–Vis absorption significantly red-shifted in BN3 ring systems as compared to open-chain counterparts. Furthermore, light harvesting efficiency (LHE) was also found higher in the ring systems as compared to the BN3 open-chain systems. Moreover, the computed structural parameters are found well corroborated with the available X-ray data.

Methods

Structures of all compounds were optimized by using density functional theory (DFT) method, with M06-2X/6-31G(d,p) level. All the calculations in this work are carried out in Gaussian 16 program package. GaussView6.1 software was used for the modeling of initial geometries and for the plotting of MEP plots. To account the solvent effect on geometries the polarized continuum model (PCM) was used and tetrahydrofuran (THF) taken as solvent. The NBO6.0 program (incorporated in G16 software) was used for the exploration of bonding nature and stabilization energies of B-N bond. The absorption spectra were simulated by using ORCA 4.2 program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data available within the manuscript and its supplementary materials file.

References

  1. Giustra ZX, Liu S-Y (2018) The state of the art in azaborine chemistry: new synthetic methods and applications. J Am Chem Soc 140:1184–1194. https://doi.org/10.1021/jacs.7b09446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paetzold P (1994) Boron-nitrogen analogues of cyclobutadiene, benzene and cyclooctatetraene. Phosphorus Sulfur Silicon Relat Elem 93:39–50. https://doi.org/10.1080/10426509408021797

    Article  Google Scholar 

  3. He G, Shynkaruk OW, Lui M et al (2014) Small inorganic rings in the 21st century: from fleeting intermediates to novel isolable entities. Chem Rev 114:7815–7880. https://doi.org/10.1021/cr400547x

    Article  CAS  PubMed  Google Scholar 

  4. Lau S, Gasperini D, Webster RL (2021) Amine–boranes as transfer hydrogenation and hydrogenation reagents: a mechanistic perspective. Angew Chemie Int Ed 60:14272–14294. https://doi.org/10.1002/anie.202010835

    Article  CAS  Google Scholar 

  5. Staubitz A, Robertson APM, Manners I (2010) Ammonia-borane and related compounds as dihydrogen sources. Chem Rev 110:4079–4124. https://doi.org/10.1021/cr100088b

    Article  CAS  PubMed  Google Scholar 

  6. Entwistle CD, Marder TB (2002) Boron chemistry lights the way: optical properties of molecular and polymeric systems. Angew Chemie Int Ed 41:2927. https://doi.org/10.1002/1521-3773(20020816)41:16%3c2927::AID-ANIE2927%3e3.0.CO;2-L

    Article  CAS  Google Scholar 

  7. Berger SM, Marder TB (2022) Applications of triarylborane materials in cell imaging and sensing of bio-relevant molecules such as DNA, RNA, and proteins. Mater Horizons 9:112–120. https://doi.org/10.1039/D1MH00696G

    Article  CAS  Google Scholar 

  8. Shoji Y, Ikabata Y, Ryzhii I et al (2021) An element-substituted cyclobutadiene exhibiting high-energy blue phosphorescence. Angew Chemie Int Ed 60:21817–21823. https://doi.org/10.1002/anie.202106490

    Article  CAS  Google Scholar 

  9. Mukundam V, Sa S, Kumari A et al (2022) Synthesis, photophysical, electrochemical, and non-linear optical properties of triaryl pyrazole-based b-n coordinated boron compounds. Chem – An Asian J 17:e202200291. https://doi.org/10.1002/asia.202200291

    Article  CAS  Google Scholar 

  10. Hayek A, Nicoud J-F, Bolze F et al (2006) Boron-containing two-photon-absorbing chromophores: electronic interaction through the cyclodiborazane core. Angew Chemie Int Ed 45:6466–6469. https://doi.org/10.1002/anie.200602266

    Article  CAS  Google Scholar 

  11. McConnell CR, Liu S-Y (2019) Late-stage functionalization of BN-heterocycles. Chem Soc Rev 48:3436–3453. https://doi.org/10.1039/C9CS00218A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abengózar A, García-García P, Fernández-Rodríguez MA, Sucunza D, Vaquero, JJ (2021) Recent developments in the chemistry of BN-aromatic hydrocarbons. Adv Heterocycl Chem 135:197–259. https://doi.org/10.1016/bs.aihch.2021.01.001

  13. Liu Z, Marder TB (2008) B-N versus C-C: How similar are they? Angew Chemie Int Ed 47:242–244. https://doi.org/10.1002/anie.200703535

    Article  CAS  Google Scholar 

  14. Jaska CA, Emslie DJH, Bosdet MJD et al (2006) Triphenylene analogues with B2N2 C2 cores: synthesis, structure, redox behavior, and photophysical properties. J Am Chem Soc 128:10885–10896. https://doi.org/10.1021/ja063519p

    Article  CAS  PubMed  Google Scholar 

  15. Jaska CA, Piers WE, McDonald R, Parvez M (2007) Synthesis, characterization, and fluorescence behavior of twisted and planar B2N2-quaterphenyl analogues. J Org Chem 72:5234–5243. https://doi.org/10.1021/jo0706574

    Article  CAS  PubMed  Google Scholar 

  16. Helten H (2016) B=N Units as Part of Extended π-conjugated oligomers and polymers. Chem - A Eur J 22:12972–12982. https://doi.org/10.1002/chem.201602665

    Article  CAS  Google Scholar 

  17. Ostroverkhova O (2016) Organic optoelectronic materials: mechanisms and applications. Chem Rev 116:13279–13412. https://doi.org/10.1021/acs.chemrev.6b00127

    Article  CAS  PubMed  Google Scholar 

  18. Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428:911–918. https://doi.org/10.1038/nature02498

    Article  CAS  PubMed  Google Scholar 

  19. Parker CA, Hatchard CG (1961) Triplet-singlet emission in fluid solutions. Phosphorescence of eosin. Trans Faraday Soc 57:1894. https://doi.org/10.1039/tf9615701894

    Article  Google Scholar 

  20. Yang Z, Mao Z, Xie Z et al (2017) Recent advances in organic thermally activated delayed fluorescence materials. Chem Soc Rev 46:915–1016. https://doi.org/10.1039/C6CS00368K

    Article  CAS  PubMed  Google Scholar 

  21. Shizu K, Lee J, Tanaka H et al (2015) Highly efficient electroluminescence from purely organic donor–acceptor systems. Pure Appl Chem 87:627–638. https://doi.org/10.1515/pac-2015-0301

    Article  CAS  Google Scholar 

  22. Usta H, Facchetti A, Marks TJ (2011) n-Channel semiconductor materials design for organic complementary circuits. Acc Chem Res 44:501–510. https://doi.org/10.1021/ar200006r

    Article  CAS  PubMed  Google Scholar 

  23. Wang X-Y, Wang J-Y, Pei J (2015) BN heterosuperbenzenes: synthesis and properties. Chem - A Eur J 21:3528–3539. https://doi.org/10.1002/chem.201405627

    Article  CAS  Google Scholar 

  24. Jiang Z, Zhou S, Jin W et al (2022) Synthesis, structure, and photophysical properties of BN-embedded analogue of coronene. Org Lett 24:1017–1021. https://doi.org/10.1021/acs.orglett.1c04161

    Article  CAS  PubMed  Google Scholar 

  25. Thiele B, Paetzold P, Englert U (1992) 1,2,3,4–Diazadiboretidine: Reaktionen einer neuen Klasse ungesättigter Bor–Stickstoff–Vierringe. Chem Ber 125:2681–2686. https://doi.org/10.1002/cber.19921251210

    Article  CAS  Google Scholar 

  26. Habereder T, Nöth H, Wagner M (2001) Two isomers of a Tris(dimethylamino)bis(trimethylstannyl) triborane(5) and the reaction of (Me3Sn)2B2(NMe2)2 with (Ph3P)2Pt(η2-C2H4). Eur J Inorg Chem 2001:1665–1669. https://doi.org/10.1002/1099-0682(200107)2001:7%3c1665::AID-EJIC1665%3e3.0.CO;2-9

    Article  Google Scholar 

  27. Li P, Shimoyama D, Zhang N et al (2022) A new platform of b/n-doped cyclophanes: access to a π-conjugated block-type B3N3 macrocycle with strong dipole moment and unique optoelectronic properties. Angew Chemie Int Ed 61:e202200612. https://doi.org/10.1002/anie.202200612

    Article  CAS  Google Scholar 

  28. Schreyer P, Paetzold P, Boese R (1988) Reaktionen der Cyclobutadien-homologen Diazadiboretidine. Chem Ber 121:195–205. https://doi.org/10.1002/cber.19881210202

    Article  CAS  Google Scholar 

  29. Dureen MA, Stephan DW (2010) Reactions of boron amidinates with CO2 and CO and other small molecules. J Am Chem Soc 132:13559–13568. https://doi.org/10.1021/ja1064153

    Article  CAS  PubMed  Google Scholar 

  30. Braunschweig H, Celik MA, Hupp F et al (2015) Formation of BN isosteres of azo dyes by ring expansion of boroles with azides. Angew Chemie Int Ed 54:6347–6351. https://doi.org/10.1002/anie.201500970

    Article  CAS  Google Scholar 

  31. Cabrera AR, Rojas RS, Valderrama M et al (2015) Synthesis of new asymmetric substituted boron amidines – reactions with CO and transfer hydrogenations of phenylacetylene. Dalton Trans 44:19606–19614. https://doi.org/10.1039/C5DT01966D

    Article  CAS  PubMed  Google Scholar 

  32. Moreno S, Ramos A, Carrillo-Hermosilla F et al (2018) Selective three-component coupling for co2 chemical fixation to boron guanidinato compounds. Inorg Chem 57:8404–8413. https://doi.org/10.1021/acs.inorgchem.8b01068

    Article  CAS  PubMed  Google Scholar 

  33. Ramos A, Antiñolo A, Carrillo-Hermosilla F et al (2019) 9-Borabicyclo[3.3.1]nonane: a metal-free catalyst for the hydroboration of carbodiimides. Chem Commun 55:3073–3076. https://doi.org/10.1039/C9CC00593E

    Article  CAS  Google Scholar 

  34. Lindl F, Lin S, Krummenacher I et al (2019) 1,2,3-diazaborinine: a BN analogue of pyridine obtained by ring expansion of a borole with an organic azide. Angew Chemie Int Ed 58:338–342. https://doi.org/10.1002/anie.201811601

    Article  CAS  Google Scholar 

  35. Landman IR, Suleymanov AA, Fadaei-Tirani F et al (2020) Brønsted and Lewis acid adducts of triazenes. Dalton Trans 49:2317–2322. https://doi.org/10.1039/D0DT00049C

    Article  CAS  PubMed  Google Scholar 

  36. Prieschl D, Bélanger-Chabot G, Guo X et al (2020) Synthesis of complex boron–nitrogen heterocycles comprising borylated triazenes and tetrazenes under mild conditions. J Am Chem Soc 142:1065–1076. https://doi.org/10.1021/jacs.9b12336

    Article  CAS  PubMed  Google Scholar 

  37. Suleymanov AA, Scopelliti R, Severin K (2022) Synthesis of four-membered BN3 heterocycles by the borylation of triazenes. Inorg Chem 61:1546–1551. https://doi.org/10.1021/acs.inorgchem.1c03309

    Article  CAS  PubMed  Google Scholar 

  38. Wu W-J, Li Q-S, Li Z-S (2017) Insights into the thermal eliminations and photoeliminations of B, N-heterocycles: a theoretical study. J Phys Chem A 121:753–761. https://doi.org/10.1021/acs.jpca.6b09495

    Article  CAS  PubMed  Google Scholar 

  39. Bu H, Zheng H, Zhang H et al (2020) Optical properties of a hexagonal C/BN framework with sp2 and sp3 hybridized bonds. Sci Rep 10:6808. https://doi.org/10.1038/s41598-020-63693-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ, Gaussian16, Wallingford, CT. Gaussian16 (Revision A.03). https://gaussian.com/citation/

  41. Dennington R, Keith TA, Millam JM (2016) GaussView 6.1. Semichem Inc., Shawnee Mission, KS, USA. https://gaussian.com/gaussview6/

  42. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  43. Mantasha I, Raza MK, Shahid M, et al (2019) Unprecedented isolation of a dinuclear tin (II) complex stabilized by pyridine-2,6-dimethanol: structure, DFT and in vitro screening of cytotoxic properties. Appl Organomet Chem. https://doi.org/10.1002/aoc.5006

  44. Dunsmore L, Navo CD, Becher J et al (2022) Controlled masking and targeted release of redox-cycling ortho-quinones via a C-C bond-cleaving 1,6-elimination. Nat Chem 14:754–765. https://doi.org/10.1038/s41557-022-00964-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miller E, Mai BK, Read JA et al (2022) A combined DFT, energy decomposition, and data analysis approach to investigate the relationship between noncovalent interactions and selectivity in a flexible DABCOnium/Chiral Anion Catalyst System. ACS Catal 12:12369–12385. https://doi.org/10.1021/acscatal.2c03077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cossi M, Barone V, Robb MA (1999) A direct procedure for the evaluation of solvent effects in MC-SCF calculations. J Chem Phys 111:5295–5302. https://doi.org/10.1063/1.479788

    Article  CAS  Google Scholar 

  47. Cossi M, Rega N, Scalmani G, Barone V (2001) Polarizable dielectric model of solvation with inclusion of charge penetration effects. J Chem Phys 114:5691–5701. https://doi.org/10.1063/1.1354187

    Article  CAS  Google Scholar 

  48. Neese F (2018) Software update: the ORCA program system, version 4.0. WIREs Comput Mol Sci 8. https://doi.org/10.1002/wcms.1327

  49. Yadav O, Ansari M, Ansari A (2022) Electronic structures, bonding aspects and spectroscopic parameters of homo/hetero valent bridged dinuclear transition metal complexes. Spectrochim Acta Part A Mol Biomol Spectrosc 278:121331. https://doi.org/10.1016/j.saa.2022.121331

    Article  CAS  Google Scholar 

  50. Kumar M, Ansari M, Ansari A (2023) Electronic, geometrical and photophysical facets of five coordinated porphyrin N-heterocyclic carbene transition metals complexes: A theoretical study. Spectrochim Acta Part A Mol Biomol Spectrosc 284:121774. https://doi.org/10.1016/j.saa.2022.121774

    Article  CAS  Google Scholar 

  51. Dou C, Ding Z, Zhang Z et al (2015) Developing conjugated polymers with high electron affinity by replacing a C-C unit with a B ← N unit. Angew Chemie Int Ed 54:3648–3652. https://doi.org/10.1002/anie.201411973

    Article  CAS  Google Scholar 

  52. Kumar M, Gupta MK, Rizvi MA et al (2023) Electronic structures and ligand effect on redox potential of iron and cobalt complexes: a computational insight. Struct Chem. https://doi.org/10.1007/s11224-022-02119-3

    Article  PubMed  Google Scholar 

  53. Azam M, Sahoo PK, Mohapatra RK et al (2022) Structural investigations, Hirsfeld surface analyses, and molecular docking studies of a phenoxo-bridged binuclear Zinc(II) complex. J Mol Struct 1251:132039. https://doi.org/10.1016/j.molstruc.2021.132039

    Article  CAS  Google Scholar 

  54. Yadav O, Kumar M, Mittal H et al (2022) Theoretical exploration on structures, bonding aspects and molecular docking of α-aminophosphonate ligated copper complexes against SARS-CoV-2 proteases. Front Pharmacol 13:982484. https://doi.org/10.3389/fphar.2022.982484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sharma MK, Sinhababu S, Mahawar P et al (2019) Donor–acceptor-stabilised germanium analogues of acid chloride, ester, and acyl pyrrole compounds: synthesis and reactivity. Chem Sci 10:4402–4411. https://doi.org/10.1039/C8SC05380D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yadav S, Kumar R, Vipin Raj K et al (2020) Amidinato germylene-zinc complexes: synthesis, bonding, and reactivity. Chem – An Asian J 15:3116–3121. https://doi.org/10.1002/asia.202000807

    Article  CAS  Google Scholar 

  57. Soudani S, Hajji M, Mi JX et al (2020) Synthesis, structure and theoretical simulation of a zinc(II) coordination complex with 2,3-pyridinedicarboxylate. J Mol Struct 1199:127015. https://doi.org/10.1016/j.molstruc.2019.127015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MK would like to thank the Central University of Haryana for its financial support. AA would like to thank the Central University of Haryana for providing computing facilities.

Author information

Authors and Affiliations

Authors

Contributions

Manjeet Kumar: calculations, validation, visualization, writing-original draft, Anagha Kizhake Talakkal: performed calculation; Ranjan K. Mohapatra: editing, Azaj Ansari: Supervised this research, Editing.

Corresponding author

Correspondence to Azaj Ansari.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors provided consent to publish.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1.24 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Talakkal, A.K., Mohapatra, R.K. et al. Photophysical properties of four-membered BN3 heterocyclic compounds: theoretical insights. J Mol Model 29, 336 (2023). https://doi.org/10.1007/s00894-023-05731-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05731-0

Keywords

Navigation