Skip to main content
Log in

Calculation of Electronic and Optical Properties of AgGaO2 Polymorphs Using Many-Body Approaches

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ab initio calculations based on many-body perturbation theory have been used to study the electronic and optical properties of AgGaO2 in rhombohedral, hexagonal, and orthorhombic phases. GW calculations showed that AgGaO2 is an indirect-bandgap semiconductor in all three phases with energy bandgap of 2.35 eV, 2.23 eV, and 2.07 eV, in good agreement with available experimental values. By solving the Bethe–Salpeter equation (BSE) using the full potential linearized augmented plane wave basis, optical properties of the AgGaO2 polymorphs were calculated and compared with those obtained using the GW-corrected random phase approximation (RPA) and with existing experimental data. Strong anisotropy in the optical absorption spectra was observed, and the excitonic structures which were absent in the RPA calculations were reproduced in GWBSE calculations, in good agreement with the optical absorption spectrum of the rhombohedral phase. While modifying peak positions and intensities of the absorption spectra, the GWBSE gave rise to the redistribution of oscillator strengths. In comparison with the z-polarized response, excitonic effects in the x-polarized response were dominant. In the x- (and y-) polarized responses of r- and h-AgGaO2, spectral features and excitonic effects occur at the lower energies, but in the case of o-AgGaO2, the spectral structures of the z-polarized response occur at lower energies. In addition, the low-energy loss functions of AgGaO2 were calculated and compared using the GWBSE approach. Spectral features in the energy loss function components near the bandgap region were attributed to corresponding excitonic structures in the imaginary part of the dielectric function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.V. Voroshilov and V.Y. Slivka, Anoxide Materials for Electronics (Lvov: Vishcha Shkola, 1989).

    Google Scholar 

  2. H. Yanagi, H. Kawazoe, A. Kudo, M. Yasukawa, and H. Hosono, J. Electroceram. 4, 407 (2000).

    Article  Google Scholar 

  3. I.G. Morell, R.S. Katiyar, S. Weisz, Z.T. Walter, H.W. Schock, and I. Balberg, Appl. Phys. Lett. 69, 987 (1996).

    Article  Google Scholar 

  4. B.F. Levine, Phys. Rev. B 7, 2600 (1973).

    Article  Google Scholar 

  5. A.H. Reshak, Phys. B 369, 243 (2005).

    Article  Google Scholar 

  6. D.S. Chemla, P.I. Kupcek, D.S. Robertson, and R.C. Smith, Opt. Commun. 3, 29 (1971).

    Article  Google Scholar 

  7. D.C. Hanna, V.V. Rampal, and R.C. Smith, Opt. Commun. 8, 151 (1973).

    Article  Google Scholar 

  8. A. Layek, S. Middya, A. Dey, M. Das, J. Datta, C. Banerjee, and P.P. Ray, J. Alloys Compd. 613, 364 (2014).

    Article  Google Scholar 

  9. H. Zhang, L. Liu, and Z. Zhou, Phys. Chem. Chem. Phys. 14, 1286 (2012).

    Article  Google Scholar 

  10. S.X. Ouyang, N. Kikugawa, D. Chen, Z.G. Zou, and J.H. Ye, J. Phys. Chem. C 113, 1560 (2009).

    Article  Google Scholar 

  11. I.H. Choi, S.D. Han, S.H. Eom, W.H. Lee, and H.C. Lee, J. Korean Phys. Soc. 29, 377 (1996).

    Google Scholar 

  12. S. Levcenko, N.N. Syrbu, V.E. Tezlevan, E. Arushanov, S. Doka-Yamingo, T. Schedel-Niedring, and M.C. Lux-Steiner, J. Phys.: Condens. Matter 19, 456222 (2007).

    Google Scholar 

  13. Y.J. Zhao and A. Zunger, Phys. Rev. B 69, 104422 (2004).

    Article  Google Scholar 

  14. M.G. Brik, J. Phys.: Condens. Matter 21, 485502 (2009).

    Google Scholar 

  15. L. Bai, Z. Lin, Z. Wang, C. Chen, and M.H. Lee, J. Chem. Phys. 120, 8772 (2004).

    Article  Google Scholar 

  16. V. Eyert, R. Fresard, and A. Maignan, Phys. Rev. B 78, 052402 (2008).

    Article  Google Scholar 

  17. R.D. Shannon, D.B. Rogers, C.T. Prewitt, and J.L. Gillson, Inorg. Chem. 10, 723 (1971).

    Article  Google Scholar 

  18. C.T. Prewitt, R.D.C.T. Prewitt, R.D. Shannon, and D.B. Rogers, Inorg. Chem. 10, 719 (1971).

    Article  Google Scholar 

  19. E. Fortunato, D. Ginley, H. Hosono, and D. Paine, MRS Bull. 32, 242 (2007).

    Article  Google Scholar 

  20. M. Grätzel, Nature 414, 338 (2001).

    Article  Google Scholar 

  21. S.B. Zhang, S.H. Wei, and A. Zunger, Phys. B 273, 976 (1999).

    Article  Google Scholar 

  22. A. Buljan, P. Aleman, and E. Ruiz, J. Phys. Chem. B 103, 8060 (1999).

    Article  Google Scholar 

  23. J. Robertson, P.W. Peacock, M.D. Towler, and R. Needs, Thin Solid Films 411, 96 (2002).

    Article  Google Scholar 

  24. X. Nie, S.H. Wei, and S.B. Zhang, Phys. Rev. Lett. 88, 066405 (2002).

    Article  Google Scholar 

  25. L. Guo, S. Zhu, S. Zhang, and W. Feng, Comput. Mater. Sci. 92, 92 (2014).

    Article  Google Scholar 

  26. M. Kumar, H. Zhao, and C. Persson, Semicond. Sci. Technol. 28, 065003 (2013).

    Article  Google Scholar 

  27. Y. Maruyama, H. Irie, and K. Hashimoto, J. Phys. Chem. B 110, 23274 (2006).

    Article  Google Scholar 

  28. H. Nagatani, I. Suzuki, M. Kita, M. Tanaka, Y. Katsuya, O. Sakata, and T. Omata, J. Solid State Chem. 222, 66 (2015).

    Article  Google Scholar 

  29. G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).

    Article  Google Scholar 

  30. M. Kumar and C. Persson, Phys. B 422, 20 (2013).

    Article  Google Scholar 

  31. S. Kumar and H.C. Gupta, Comput. Theor. Chem. 977, 78 (2011).

    Article  Google Scholar 

  32. S. Sagmeister and C. Ambrosch-Draxl, Phys. Chem. Chem. Phys. 11, 4451 (2009).

    Article  Google Scholar 

  33. A. Gulans, S. Kontur, C. Meisenbichler, D. Nabok, P. Pavone, S. Rigamonti, S. Sagmeister, U. Werner, and C. Draxl, J. Phys.: Condens. Matter 26, 363202 (2014).

    Google Scholar 

  34. J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  Google Scholar 

  35. I. Aguilera, J. Vidal, P. Wahnón, L. Reining, and S. Botti, Phys. Rev. B 84, 085145 (2011).

    Article  Google Scholar 

  36. S. Sanna, C. Thierfelder, S. Wippermann, T.P. Sinha, and W.G. Schmidt, Phys. Rev. B 83, 054112 (2011).

    Article  Google Scholar 

  37. A. Riefer, S. Sanna, A. Schindlmayr, and W.G. Schmidt, Phys. Rev. B 87, 195208 (2013).

    Article  Google Scholar 

  38. H. Nejatipour and M. Dadsetani, J. Lumin. 172, 14 (2016).

    Article  Google Scholar 

  39. H. Nejatipour and M. Dadsetani, Int. J. Mod. Phys. B 30, 1650077 (2016).

    Article  Google Scholar 

  40. M. Dadsetani, H. Nejatipour, and A. Ebrahimian, J. Phys. Chem. Solids 80, 67 (2015).

    Article  Google Scholar 

  41. H. Nejatipour and M. Dadsetani, Phys. Scr. 90, 085802 (2015).

    Article  Google Scholar 

  42. D. Nabok, A. Gulans, and C. Draxl, Phys. Rev. B 94, 035118 (2016).

    Article  Google Scholar 

  43. W.C. Sheets, E. Mugnier, A. Barnabé, T.J. Marks, and K.R. Poeppelmeier, Chem. Mater. 18, 7 (2006).

    Article  Google Scholar 

  44. S. Ouyang, D. Chen, D. Wang, Z. Li, J. Ye, and Z. Zou, Cryst. Growth Des. 10, 2921 (2010).

    Article  Google Scholar 

  45. B.J. Ingram, T.O. Mason, R. Asahi, K.T. Park, and A.J. Freeman, Phys. Rev. B 64, 155114 (2001).

    Article  Google Scholar 

  46. K.A. Vanaja, R.S. Ajimsha, A.S. Asha, and M.K. Jayaraj, Appl. Phys. Lett. 88, 212103 (2006).

    Article  Google Scholar 

  47. W.C. Sheets, E.S. Stampler, M.I. Bertoni, M. Sasaki, T.J. Marks, T.O. Mason, and K.R. Poeppelmeier, Inorg. Chem. 47, 2696 (2008).

    Article  Google Scholar 

  48. C. Ambrosch-Draxl and J.O. Sofo, Phys. Commun. 175, 1 (2006).

    Article  Google Scholar 

  49. C. Vorwerk, C. Cocchi, and C. Draxl, Comput. Phys. Commun. 201, 119 (2016).

    Article  Google Scholar 

  50. C. Cocchi, H. Zschiesche, D. Nabok, A. Mogilatenko, M. Albrecht, Z. Galazka, H. Kirmse, C. Draxl, and C.T. Koch, Phys. Rev. B 94, 075147 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reihan Nejatipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadsetani, M., Nejatipour, R. Calculation of Electronic and Optical Properties of AgGaO2 Polymorphs Using Many-Body Approaches. J. Electron. Mater. 47, 1059–1070 (2018). https://doi.org/10.1007/s11664-017-5845-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5845-6

Keywords

Navigation