Skip to main content
Log in

Tweaking the conjugation effects on a pair of new triazene compounds by targeted deprotonation: a spectroscopic and theoretical overview

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Triazene compounds (-NNN(H)-) exhibit versatility in biological, physical, and chemical applications. In their anionic form (-NNN-)(-), they can act as coordinating sites for metals, forming metallic complexes. In this study, two new isomeric triazene compounds with meta- and para-substituents in their neutral and anionic forms were investigated. A combination of detailed experimental spectroscopic characterization and computational chemistry analyses were employed. The new compounds, 1-(2-benzamide)-3-(3-nitrophenyl) triazene (m-TZN) and 1-(2-benzamide)-3-(4-nitrophenyl) triazene (p-TZN), were compared to 1,3-diphenyltriazene (dph-TZN) to understand the effects of functionalization and targeted triazene deprotonation. The anionic forms are stable, and our investigation suggests that these new compounds are suitable tridentate ligands that can act as chelating agents for metallic cations in stable complexes, similar to those found in vitamin B12.

Methods

The absorption, vibrational, and electronic properties of the newly synthesized triazene compounds were extensively characterized using FT-IR/FT-Raman and UV-Vis spectroscopy. Their distinct molecular properties, intramolecular hydrogen bond effects, stability, and electronic transitions were investigated using the ORCA software. These analyses involved DFT and TD-DFT calculations at the ωB97X-D3/Def2-TZVP level of theory with THF CPCM implicit solvation to determine the molecular topology and electronic structure. The advanced STEOM-DLPNO-CCSD method for excited states was employed, enabling an in-depth analysis of ground and excited-state chemistry, accounting for precise electronic correlation and solvation effects. Explicit THF solvation was tested on the full TD-DFT ωB97X-D3/Def2-TZVP level and using ONIOM on the STEOM calculation. Reactivity was studied using Fukui functions, and action as chelating agents was investigated using GFN-xTB2 and DFT.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

All relevant data generated or analyzed during the work are included in this paper and any additional data can be made available upon reasonable request.

References

  1. Griess P (1866) Ueber eine neue Klasse organischer Verbindungen, in denen Wasserstoff durch Stickstoff vertreten ist. Ann Chem Pharm 137:39–91. https://doi.org/10.1002/jlac.18661370105

    Article  Google Scholar 

  2. Lee W-T, Zeller M, Lugosan A (2018) Bis(triazenide), tris(triazenide), and lantern-type of triazenide iron complexes: synthesis and structural characterization. Inorg Chim Acta 477:109–113. https://doi.org/10.1016/j.ica.2018.02.014

    Article  CAS  Google Scholar 

  3. Santos AJRWA, dos Santos Hackbart HC, Giacomini GX et al (2016) Inorganic and organic structures as interleavers among [bis(1-methyl-3-(p-carboxylatephenyl)triazenide 1-oxide)Ni(II)] complexes to form supramolecular arrangements. J Mol Struct 1125:426–432. https://doi.org/10.1016/j.molstruc.2016.07.021

    Article  CAS  Google Scholar 

  4. Nunes MS, Garzon LR, Rampelotto RF et al (2017) Synthesis, characterization and biological activity of a gold(I) triazenide complex against chronic myeloid leukemia cells and biofilm producing microorganisms. Braz J Pharm Sci 53. https://doi.org/10.1590/s2175-97902017000400191

  5. Galli P, Moretti P, Cavalleri A et al (2023) Study of the photoreaction of new triazene derivatives in solution and in polymer binder. J Photochem Photobiol A Chem 435:114331. https://doi.org/10.1016/j.jphotochem.2022.114331

    Article  CAS  Google Scholar 

  6. Marefat Khah A, Reinholdt P, Nuernberger P et al (2020) Relaxation dynamics of the triazene compound Berenil in DNA-minor-groove confinement after photoexcitation. J Chem Theory Comput 16:5203–5211. https://doi.org/10.1021/acs.jctc.0c00489

    Article  CAS  PubMed  Google Scholar 

  7. Świderski G, Łaźny R, Sienkiewicz M et al (2021) Synthesis, spectroscopic, and theoretical study of copper and cobalt complexes with dacarbazine. Materials 14:3274. https://doi.org/10.3390/ma14123274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lepre LF, Inoue F, Corio P et al (2013) Spectroscopic characterization of cadion: UV-vis, resonance Raman and DFT calculations of a versatile metal complexing agent. J Raman Spectrosc 44:567–572. https://doi.org/10.1002/jrs.4228

    Article  CAS  Google Scholar 

  9. Suleymanov AA, Doll M, Ruggi A et al (2020) Synthesis of tetraarylethene luminogens by C−H vinylation of aromatic compounds with triazenes. Angew Chem 132:10043–10047. https://doi.org/10.1002/ange.201908755

    Article  Google Scholar 

  10. Medrano-Castillo LJ, Collazo-Flores MÁ, Camarena-Díaz JP et al (2020) Base-free transfer hydrogenation of aryl-ketones, alkyl-ketones and alkenones catalyzed by an IrIIICp* complex bearing a triazenide ligand functionalized with pyrazole. Inorg Chim Acta 507:119551. https://doi.org/10.1016/j.ica.2020.119551

    Article  CAS  Google Scholar 

  11. Samii R, Zanders D, Fransson A et al (2021) Synthesis, characterization, and thermal study of divalent germanium, tin, and lead triazenides as potential vapor deposition precursors. Inorg Chem 60:12759–12765. https://doi.org/10.1021/acs.inorgchem.1c00695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Randaccio L, Geremia S, Demitri N, Wuerges J (2010) Vitamin B12: unique metalorganic compounds and the most complex vitamins. Molecules 15:3228–3259. https://doi.org/10.3390/molecules15053228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kruse H, Goerigk L, Grimme S (2012) Why the standard B3LYP/6-31G* model chemistry should not be used in DFT calculations of molecular thermochemistry: understanding and correcting the problem. J Org Chem 77:10824–10834. https://doi.org/10.1021/jo302156p

    Article  CAS  PubMed  Google Scholar 

  14. Lin Y-S, Li G-D, Mao S-P, Chai J-D (2013) Long-range corrected hybrid density functionals with improved dispersion corrections. J Chem Theory Comput 9:263–272. https://doi.org/10.1021/ct300715s

    Article  CAS  PubMed  Google Scholar 

  15. Sous J, Goel P, Nooijen M (2014) Similarity transformed equation of motion coupled cluster theory revisited: a benchmark study of valence excited states. Mol Phys 112:616–638. https://doi.org/10.1080/00268976.2013.847216

    Article  CAS  Google Scholar 

  16. Lego C, Neumüller B (2011) Reaktionen von 1,3-Diphenyltriazenid mit Cu+ und Tl+. Z Anorg Allg Chem 637:1784–1789. https://doi.org/10.1002/zaac.201100227

    Article  CAS  Google Scholar 

  17. Pracht P, Bohle F, Grimme S (2020) Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys Chem Chem Phys 22:7169–7192. https://doi.org/10.1039/C9CP06869D

    Article  CAS  PubMed  Google Scholar 

  18. Ehlert S, Stahn M, Spicher S, Grimme S (2021) Robust and efficient implicit solvation model for fast semiempirical methods. J Chem Theory Comput 17:4250–4261. https://doi.org/10.1021/acs.jctc.1c00471

    Article  CAS  PubMed  Google Scholar 

  19. Neese F, Wennmohs F, Becker U, Riplinger C (2020). The ORCA quantum chemistry program package 152:224108. https://doi.org/10.1063/5.0004608

    Article  CAS  Google Scholar 

  20. Sarkar R, Boggio-Pasqua M, Loos P-F, Jacquemin D (2021) Benchmarking TD-DFT and wave function methods for oscillator strengths and excited-state dipole moments. J Chem Theory Comput 17:1117–1132. https://doi.org/10.1021/acs.jctc.0c01228

    Article  CAS  PubMed  Google Scholar 

  21. Laurent AD, Jacquemin D (2013) TD-DFT benchmarks: a review. Int J Quantum Chem 113:2019–2039. https://doi.org/10.1002/qua.24438

    Article  CAS  Google Scholar 

  22. Izsák R (2020) Single-reference coupled cluster methods for computing excitation energies in large molecules: the efficiency and accuracy of approximations. WIREs Comput Mol Sci 10:e1445. https://doi.org/10.1002/wcms.1445

    Article  CAS  Google Scholar 

  23. Glendening ED, Landis CR, Weinhold F (2013) NBO 6.0: Natural bond orbital analysis program. J Comput Chem 34:1429–1437. https://doi.org/10.1002/JCC.23266

    Article  CAS  PubMed  Google Scholar 

  24. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  25. dos Santos AJRWA, Bersch P, de Oliveira HPM et al (2014) Triazene 1-oxide compounds: synthesis, characterization and evaluation as fluorescence sensor for biological applications. J Mol Struct 1060:264–271. https://doi.org/10.1016/j.molstruc.2013.12.055

    Article  CAS  Google Scholar 

  26. Masoud MS, Ali AE, Shaker MA, Ghani MA (2004) Solvatochromic behavior of the electronic absorption spectra of some azo derivatives of amino pyridines. Spectrochim Acta A Mol Biomol Spectrosc 60:3155–3159. https://doi.org/10.1016/j.saa.2004.02.030

    Article  CAS  PubMed  Google Scholar 

  27. Paraginski GL, Hörner M, Back DF et al (2016) 1-(2-biphenyl)-3-methyltriazenide-N-oxide as a template for intramolecular copper(II)⋯arene-π interactions. J Mol Struct 1104:79–84. https://doi.org/10.1016/j.molstruc.2015.09.034

    Article  CAS  Google Scholar 

  28. McMurry J (2010) Organic chemistry7th edn. Cengage Brooks/Cole, Belmont, CA

    Google Scholar 

  29. Lepre LF, Inoue F, Corio P et al (2013) Spectroscopic characterization of cadion: UV-vis, resonance Raman and DFT calculations of a versatile metal complexing agent: Spectroscopic characterization of cadion. J Raman Spectrosc 44:567–572. https://doi.org/10.1002/jrs.4228

    Article  CAS  Google Scholar 

  30. Escudero D, Laurent AD, Jacquemin D (2017) Time-dependent density functional theory: a tool to explore excited states. In: Leszczynski J, Kaczmarek-Kedziera A, Puzyn T et al (eds) Handbook of computational chemistry. Springer International Publishing, Cham, pp 927–961

    Chapter  Google Scholar 

  31. Casanova-Páez M, Dardis MB, Goerigk L (2019) ωb2PLYP and ωb2GPPLYP: the first two double-hybrid density functionals with long-range correction optimized for excitation energies. J Chem Theory Comput 15:4735–4744. https://doi.org/10.1021/acs.jctc.9b00013

    Article  CAS  PubMed  Google Scholar 

  32. Perdew JP, Schmidt K (2001) Jacob’s ladder of density functional approximations for the exchange-correlation energy. AIP Conf Proc 577:1–20. https://doi.org/10.1063/1.1390175

    Article  CAS  Google Scholar 

  33. Lechner MH, Neese F, Izsák R (2021) An excited state coupled-cluster study on indigo dyes. Mol Phys 119:e1965235. https://doi.org/10.1080/00268976.2021.1965235

    Article  CAS  Google Scholar 

  34. Nooijen M, Bartlett RJ (1997) Similarity transformed equation-of-motion coupled-cluster theory: details, examples, and comparisons. J Chem Phys 107:6812–6830. https://doi.org/10.1063/1.474922

    Article  CAS  Google Scholar 

  35. Schmalzbauer M, Marcon M, König B (2021) Excited state anions in organic transformations. Angew Chem Int Ed 60:6270–6292. https://doi.org/10.1002/anie.202009288

    Article  CAS  Google Scholar 

  36. Chung LW, Sameera WMC, Ramozzi R et al (2015) The ONIOM method and its applications. Chem Rev 115:5678–5796. https://doi.org/10.1021/cr5004419

    Article  CAS  PubMed  Google Scholar 

  37. Manohara SR, Kumar VU, Shivakumaraiah GL (2013) Estimation of ground and excited-state dipole moments of 1, 2-diazines by solvatochromic method and quantum-chemical calculation. J Mol Liq 181:97–104. https://doi.org/10.1016/j.molliq.2013.02.018

    Article  CAS  Google Scholar 

  38. CCCBDB listing of precalculated vibrational scaling factors. https://cccbdb.nist.gov/vibscalejust.asp. Accessed 18 Jan 2023

  39. Smith BC (2023) Infrared spectroscopy of polymers X: polyacrylates. Spectroscopy:10–14. https://doi.org/10.56530/spectroscopy.mi9381w4

  40. Pracht P, Grimme S (2021) Calculation of absolute molecular entropies and heat capacities made simple. Chem Sci 12:6551–6568. https://doi.org/10.1039/D1SC00621E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. H⊘yvik IM, Jansik B, J⊘rgensen P (2013) Pipek–Mezey localization of occupied and virtual orbitals. J Comput Chem 34:1456–1462. https://doi.org/10.1002/jcc.23281

    Article  CAS  Google Scholar 

  42. Bader RFW, Nguyen-Dang TT (1981) Quantum theory of atoms in molecules - Dalton revisited. Advances in quantum chemistry. Academic Press, pp 63–124

    Google Scholar 

  43. Emamian S, Lu T, Kruse H, Emamian H (2019) Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory. J Comput Chem jcc.26068. https://doi.org/10.1002/jcc.26068

  44. Jezuita A, Szatylowicz H, Krygowski TM (2020) How amino and nitro substituents affect the aromaticity of benzene ring. Chem Phys Lett 753:137567. https://doi.org/10.1016/j.cplett.2020.137567

    Article  CAS  Google Scholar 

  45. Suleymanov AA, Le Du E, Dong Z et al (2020) Triazene-activated donor–acceptor cyclopropanes: ring-opening and (3 + 2) annulation reactions. Org Lett 22:4517–4522. https://doi.org/10.1021/acs.orglett.0c01527

    Article  CAS  PubMed  Google Scholar 

  46. Aihara J (1999) Reduced HOMO−LUMO Gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J Phys Chem A 103:7487–7495. https://doi.org/10.1021/jp990092i

    Article  CAS  Google Scholar 

  47. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539. https://doi.org/10.1021/ja00905a001

    Article  CAS  Google Scholar 

  48. Zhou Z, Parr RG (1990) Activation hardness: new index for describing the orientation of electrophilic aromatic substitution. J Am Chem Soc 112:5720–5724. https://doi.org/10.1021/ja00171a007

    Article  CAS  Google Scholar 

  49. Kurtz HA (1984) LUMO energies and negative electron affinities. J Chem Educ 61:580. https://doi.org/10.1021/ed061p580

    Article  CAS  Google Scholar 

  50. Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050. https://doi.org/10.1021/ja00326a036

    Article  CAS  Google Scholar 

  51. Beck ME (2005) Do Fukui function maxima relate to sites of metabolism? A critical case study. J Chem Inf Model 45:273–282. https://doi.org/10.1021/ci049687n

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Mariana Boneberger Behm (UFFS) and Dr. Manfredo Hörner (UFSM) for providing the m-TZN and p-TZN reactants. Theoretical calculations were performed using the Lobo Carneiro supercomputer from Núcleo Avançado de Computação de Alto Desemprenho (NACAD), under the Project ID a20006 and the Sagarana Cluster from CEPAD - Centro de Processamento de Alto Desempenho ICB/UFMG. The authors would also like to thank the National Laboratory for Scientific Computing (LNCC/MCTI, Brazil) for providing HPC resources of the SDumont supercomputer, which have contributed to the research results reported within this paper. URL: http://sdumont.lncc.br.

Funding

The authors would like to thank the funding from PROAP/CAPES, 001.

Author information

Authors and Affiliations

Authors

Contributions

H.C.: theoretical calculations, wrote the main manuscript text, figure preparation. U.A.: experimental FT-Raman/IR measurements, figure preparation. A.J: syntheses, funding, wrote the main manuscript text. E.C.: project management, experimental FT-Raman/IR measurements, FT-Raman/IR discussion, wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Henrique de Castro Silva Junior.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2908 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Castro Silva Junior, H., Antunes, U., dos Santos, A.J.R.W.A. et al. Tweaking the conjugation effects on a pair of new triazene compounds by targeted deprotonation: a spectroscopic and theoretical overview. J Mol Model 29, 298 (2023). https://doi.org/10.1007/s00894-023-05685-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05685-3

Keywords

Navigation