Skip to main content

Time-Dependent Density Functional Theory: A Tool to Explore Excited States

  • Reference work entry
  • First Online:
Handbook of Computational Chemistry

Abstract

The accurate description of electronically excited states remains a challenge for theoretical chemistry. Among the vast body of quantum mechanical methods available to perform this task, time-dependent density functional theory (TD-DFT) currently remains the most widely applied method, a success that one can explain not only by its very interesting accuracy/effort ratio but also by the ease to perform TD-DFT calculations for a large number of compounds and properties (absorption and emission spectra, band shapes, dipole moments, electron and proton transfers, etc.) in various environments. In the present chapter, we present TD-DFT as a tool for modeling such excited-state properties, with a focus on several practical aspects (choosing an exchange-correlation functional and an atomic basis set, analyzing the nature of the electronic transitions, comparing results with experiments, including environmental effects, etc.) that are useful to get a quick start. In that framework we rely on a series of examples of increasing complexity considering both organic and inorganic compounds as well as biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamo, C., & Jacquemin, D. (2013). The calculations of excited-state properties with Time-Dependent Density Functional Theory. Chemical Society Reviews, 42, 845.

    Article  CAS  Google Scholar 

  • Altun, A., Yokoyama, S., & Morokuma, K. (2009). Mechanism of Spectral Tuning Going from Retinal in Vacuo to Bovine Rhodopsin and its Mutants: Multireference ab Initio Quantum Mechanics/Molecular Mechanics Studies. Journal of Physical Chemistry B, 112, 16883.

    Article  Google Scholar 

  • Avila Ferrer, F. J., Improta, R., Santoro, F., & Barone, V. (2011). Computing the inhomogeneous broadening of electronic transitions in solution: a first-principle quantum mechanical approach. Physical Chemistry Chemical Physics, 13(38), 17007.

    Article  Google Scholar 

  • Avila Ferrer, F. J., Cerezo, J., Stendardo, E., Improta, R., & Santoro, F. (2013). Insights for an Accurate Comparison of Computational Data to Experimental Absorption and Emission Spectra: Beyond the Vertical Transition Approximation. Journal of Chemical Theory and Computation, 9, 2072.

    Article  CAS  Google Scholar 

  • Baer, R., Livshits, E., & Salzner, U. (2010). Tuned range-separated hybrids in density functional theoryAnnual Review of Physical Chemistry, 61, 85.

    Google Scholar 

  • Baerends, E. J., Gritsenko, O. V., & van Meer, R. (2013). The Kohn–Sham gap, the fundamental gap and the optical gap: the physical meaning of occupied and virtual Kohn–Sham orbital energies. Physical Chemistry Chemical Physics, 15, 16408.

    Article  CAS  Google Scholar 

  • Baiardi, A., Bloino, J., & Barone, V. (2013). General Time Dependent Approach to Vibronic Spectroscopy Including Franck–Condon, Herzberg–Teller, and Duschinsky Effects. Journal of Chemical Theory and Computation, 9(9), 4097.

    Article  CAS  Google Scholar 

  • Baková, R., Chergui, M., Daniel, C., Vlček, A., Jr., & Záliš, S. (2011). Relativistic effects in spectroscopy and photophysics of heavy-metal complexes illustrated by spin–orbit calculations of [Re(imidazole)(CO)3(phen)]+. Coordination Chemistry Reviews, 255(7–8), 975. A Celebration of Harry B. Gray’s 75th Birthday.

    Google Scholar 

  • Barbatti, M., & Crespo-Otero, R. (2015). Surface Hopping Dynamics with DFT Excited States. In N. Ferré, M. Filatov, & M. Huix-Rotllant (Eds.), Density-functional methods for excited states (Topics in current chemistry, pp. 1–30). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Barone, V., & Biczysko, M., Borkowska-Panek, M., & Bloino, J. (2014). A multifrequency virtual spectrometer for complex bio-organic systems: vibronic and environmental effects on the UV/Vis spectrum of chlorophyll a. ChemPhysChem, 15(15), 3355.

    Article  CAS  Google Scholar 

  • Biancardi, A., Biver, T., Secco, F., & Mennucci, B. (2013). An investigation of the photophysical properties of minor groove bound and intercalated DAPI through quantum-mechanical and spectroscopic tools, Physical Chemistry Chemical Physics, 15(13), 4596.

    Article  CAS  Google Scholar 

  • Brémond, E. A., Kieffer, J., & Adamo, C. (2010). A Reliable Method for Fitting TD-DFT Transitions to Experimental UV-Visible Spectra. Journal of Molecular Structure: THEOCHEM, 954(1–3), 52.

    Article  Google Scholar 

  • Cammi, R., & Mennucci, B. (1999). Linear response theory for the polarizable continuum model. Journal of Chemical Physics, 110, 9877.

    Article  CAS  Google Scholar 

  • Caricato, M., Mennucci, B., Tomasi, J., Ingrosso, F., Cammi, R., Corni, S., & Scalmani, G. (2006). Formation and relaxation of excited states in solution: A new time dependent polarizable continuum model based on time dependent density functional theory. Journal of Chemical Physics, 124, 124520.

    Article  Google Scholar 

  • Caricato, M., Trucks, G. W., Frisch, M. J., & Wiberg, K. B. (2010). Electronic Transition Energies: A Study of the Performance of a Large Range of Single Reference Density Functional and Wave Function Methods on Valence and Rydberg States Compared to Experiment. Journal of Chemical Theory and Computation, 6, 370.

    Article  CAS  Google Scholar 

  • Casida, M. E. (1995). Time-dependent density-functional response theory for molecules (Recent advances in density functional methods, Vol. 1, pp. 155–192). Singapore: World Scientific.

    Google Scholar 

  • Casida, M. E., & Huix-Rotllant, M. (2012). Progress in Time-Dependent Density-Functional Theory. Annual Review of Physical Chemistry, 63, 287.

    Article  CAS  Google Scholar 

  • Chergui, M. (2015). Ultrafast Photophysics of Transition Metal Complexes. Accounts of Chemical Research, 48(3), 801. pMID: 25646968

    Article  CAS  Google Scholar 

  • Chibani, S., Le Guennic, B., Charaf-Eddin, A., Laurent, A. D., & Jacquemin, D. (2013). Revisiting the optical signatures of BODIPY with ab initio tools. Chemical Sciences, 4, 1950.

    CAS  Google Scholar 

  • Ciofini, I., & Adamo, C. (2007). Accurate Evaluation of Valence and Low-Lying Rydberg States with Standard Time-Dependent Density Functional Theory. Journal of Physical Chemistry A, 111, 5549.

    Article  CAS  Google Scholar 

  • Cossi, M., & Barone, V. (2001). Time-dependent density functional theory for molecules in liquid solutions. Journal of Chemical Physics, 115, 4708.

    Article  CAS  Google Scholar 

  • Daniel, C. (2015). Photochemistry and photophysics of transition metal complexes: Quantum chemistry. Coordination Chemistry Reviews, 282–283, 19. Proceedings from the 20th International Symposium on the Photophysics and Photochemistry of Coordination Compounds.

    Google Scholar 

  • Dierksen, M., & Grimme, S. (2004). The Vibronic Structure of Electronic Absorption Spectra of Large Molecules: A Time-Dependent Density Functional Study on the Influence of “Exact” Hartree–Fock Exchange. Journal of Physical Chemistry A, 108, 10225.

    Article  CAS  Google Scholar 

  • Escudero, D., & Jacquemin, D. (2015). Computational insights into the photodeactivation dynamics of phosphors for OLEDs: a perspective. Dalton Transactions, 44, 8346.

    Article  CAS  Google Scholar 

  • Escudero, D., & Thiel, W. (2014). Assessing the density functional theory-based multireference configuration interaction (DFT/MRCI) method for transition metal complexes. The Journal of Chemical Physics, 140(19), 194105.

    Article  Google Scholar 

  • Furche, F., & Ahlrichs, R. (2002). Adiabatic time-dependent density functional methods for excited state properties. Journal of Chemical Physics, 117, 7433.

    Article  CAS  Google Scholar 

  • Ghosh, D., Kosenkov, D., Vanovschi, V., Flick, J., Kaliman, I., Shao, Y., Gilbert, A. T. B., Krylov, A. I., & Slipchenko, L. V. (2013). Effective fragment potential method in Q-CHEM: A guide for users and developers. Journal of Computational Chemistry, 34, 1060.

    Article  CAS  Google Scholar 

  • Goerigk, L., & Grimme, S. (2010). Assessment of TD-DFT methods and of various spin scaled CIS(D) and CC2 versions for the treatment of low-lying valence excitations of large organic dyes. Journal of Chemical Physics, 132, 184103.

    Article  Google Scholar 

  • González, L., Escudero, D., & Serrano-Andrés, L. (2012). Progress and Challenges in the Calculation of Electronic Excited States. ChemPhysChem, 13(1), 28.

    Article  Google Scholar 

  • Gordon, M. S., Freitag, M., Bandyopadhyay, P., Jensen, J., Kairys, V., & Stevenss, W. J. (2001). The Effective Fragment Potential Method: A QM-Based MM Approach to Modeling Environmental Effects in Chemistry. Journal of Physical Chemistry A, 105, 293.

    Article  CAS  Google Scholar 

  • Gordon, M. S., Fedorov, D. G., Pruitt, S. R., & Slipchenko, L. V. (2012). Fragmentation Methods: A Route to Accurate Calculations on Large Systems. Chemistry Reviews, 112, 632.

    Article  CAS  Google Scholar 

  • Guido, C. A., Jacquemin, D., Adamo, C., & Mennucci, B. (2010). On the TD-DFT Accuracy in Determining Single and Double Bonds in Excited-State Structures of Organic Molecules. Journal of Physical Chemistry A, 114, 13402.

    Article  CAS  Google Scholar 

  • Happ, B., Escudero, D., Hager, M. D., Friebe, C., Winter, A., Gorls, H., Altuntas, E., Gonzalez, L., & Schubert, U. S. (2010). N-Heterocyclic Donor- and Acceptor-Type Ligands Based on 2-(1H-[1,2,3]Triazol-4-yl)pyridines and Their Ruthenium(II) Complexes. Journal of Organic Chemistry, 75, 4025–4038.

    Article  CAS  Google Scholar 

  • Hu, L. H., Söderhjelm, P., & Ryde, U. (2011). On the Convergence of QM/MM Energies. Journal of Chemical Theory and Computation, 7(3), 761.

    Article  CAS  Google Scholar 

  • Huix-Rotllant, M., Nikiforov, A., Thiel, W., & Filatov, M. (2015). Description of conical intersections with density functional methods. In Density-functional methods for excited states (Topics in current chemistry, vol 368, pp. 445–476). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Improta, R., Scalmani, G., Frisch, M. J., & Barone, V. (2007). Toward effective and reliable fluorescence energies in solution by a new state specific polarizable continuum model time dependent density functional theory approach. Journal of Chemical Physics, 127, 074504.

    Article  Google Scholar 

  • Isegawa, M., Peverati, R., & Truhlar, D. G. (2012). Performance of recent and high-performance approximate density functionals for time-dependent density functional theory calculations of valence and Rydberg electronic transition energies. Journal of Chemical Physics, 137, 244104.

    Article  Google Scholar 

  • Jacquemin, D., Preat, J., Wathelet, V., & Perpète, E. A. (2006). Substitution and chemical environment effects on the absorption spectrum of indigo. Journal of Chemical Physics, 124, 074104.

    Article  Google Scholar 

  • Jacquemin, D., Wathelet, V., Perpète, E. A., & Adamo, C. (2009a). Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules. Journal of Chemical Theory and Computation, 5, 2420.

    Article  CAS  Google Scholar 

  • Jacquemin, D., Perpète, E. A., Laurent, A. D., Assfeld, X., & Adamo, C. (2009b). Spectral properties of self-assembled squaraine–tetralactam: a theoretical assessment. Physical Chemistry Chemical Physics, 11, 1258.

    Article  CAS  Google Scholar 

  • Jacquemin, D., Planchat, A., Adamo, C., & Mennucci, B. (2012a). TD-DFT Assessment of Functionals for Optical 0–0 Transitions in Solvated Dyes. Journal of Chemical Theory and Computation, 8, 2359.

    Article  CAS  Google Scholar 

  • Jacquemin, D., Le Bahers, T., Adamo, C., & Ciofini, I. (2012b). What is the âĂIJbestâĂİ atomic charge model to describe through-space charge-transfer excitations? Physical Chemistry Chemical Physics, 14, 5383. Code available at Université de Nantes, http://www.sciences.univ-nantes.fr/CEISAM/erc/marches/ (Accessed 1 May 2014).

  • Jacquemin, D., Moore, B., Planchat, A., Adamo, C., & Autschbach, J. (2014). Performance of an Optimally Tuned Range-Separated Hybrid Functional for 0–0 Electronic Excitation Energies. Journal of Chemical Theory and Computation, 10(4), 1677.

    Article  CAS  Google Scholar 

  • Jäger, M., Freitag, L., & González, L. (2015). Using computational chemistry to design Ru photosensitizers with directional charge transfer. Coordination Chemistry Reviews, 304–305, 146. cOST: European Cooperation in Science and Technology Current Challenges in Supramolecular Artificial Photosynthesis.

    Google Scholar 

  • Kaliman, I. A., & Slipchenko, L. V. (2013). A new parallel implementation of the effective fragment potential method as a portable software library. Journal of Computational Chemistry, 34, 2284.

    Article  CAS  Google Scholar 

  • Labat, F., Ciofini, I., Hratchian, H. P., Frisch, M. J., Raghavachari, K., & Adamo, C. (2009). First Principles Modeling of Eosin-Loaded ZnO Films: A Step toward the Understanding of Dye-Sensitized Solar Cell Performances. Journal of the American Chemical Society, 131(40), 14290.

    Article  CAS  Google Scholar 

  • Latouche, C., Skouteris, D., Palazzetti, F., & Barone, V. (2015). TD-DFT Benchmark on Inorganic Pt(II) and Ir(III) Complexes. Journal of Chemical Theory and Computation, 11(7), 3281–3289.

    Article  CAS  Google Scholar 

  • Laurent, A., & Assfeld, X. (2010). Effect of the enhanced cyan fluorescent protein framework on the UV/visible absorption spectra of some chromophores. The Journal Interdisciplinary Sciences–Computational Life Sciences, 2(1), 38.

    Article  Google Scholar 

  • Laurent, A. D., & Jacquemin, D. (2013). TD-DFT benchmarks: A review. International Journal of Quantum Chemistry, 113, 2019.

    Article  CAS  Google Scholar 

  • Laurent, A. D., Mironov, V. A., Chapagain, P. P., Nemukhin, A. V., & Krylov, A. I. (2012). Conformational Exploration of Two Peptides and Their Hybrid Polymer Conjugates: Potentialities As Self-Aggregating Materials. Journal of Physical Chemistry B, 116, 12426.

    Article  CAS  Google Scholar 

  • Laurent, A. D., Adamo, C., & Jacquemin, D. (2014). Dye chemistry with time-dependent density functional theory. Physical Chemistry Chemical Physics, 16(28), 14334.

    Article  CAS  Google Scholar 

  • Le Bahers, T., Adamo, C., & Ciofini, I. (2011). A qualitative index of spatial extent in charge-transfer excitations. Journal of Chemical Theory and Computation, 7, 2498. Code available at Chimie Paristech, www.chimie-paristech.fr/labos/LECA/Research/site_msc/

  • Le Guennic, B., & Jacquemin, D. (2015). Taking Up the Cyanine Challenge with Quantum Tools. Accounts of Chemical Research, 48, 530.

    Article  Google Scholar 

  • Liao, R. Z., & Thiel, W. (2012). Comparison of QM-Only and QM/MM Models for the Mechanism of Tungsten-Dependent Acetylene Hydratase. Journal of Chemical Theory and Computation, 8(10), 3793.

    Article  CAS  Google Scholar 

  • Liu, J., & Liang, W. Z. (2011). Analytical approach for the excited-state Hessian in time-dependent density functional theory: Formalism, implementation, and performance. Journal of Chemical Physics, 135(18), 184111.

    Article  Google Scholar 

  • Marenich, A. V., Cramer, C. J., Truhlar, D. G., Guido, C. G., Mennucci, B., Scalmani, G., & Frisch, M. J. (2011). Practical computation of electronic excitation in solution: vertical excitation model. Chemical Sciences, 2, 2143.

    CAS  Google Scholar 

  • Marques, M. A. L., Nogueira, F. M. S., Gross, E. K. U., & Rubio, A. (Eds.). (2012). Fundamentals of time-dependent density functional theory (Lecture notes in physics, Vol. 837). Heidelberg: Springer.

    Google Scholar 

  • Martin, R. L. (2003). Natural transition orbitals. Journal of Chemical Physics, 118(11), 4775.

    Article  CAS  Google Scholar 

  • Minaev, B., Baryshnikov, G., & Agren, H. (2014). Principles of phosphorescent organic light emitting devices. Physical Chemistry Chemical Physics, 16, 1719.

    Article  CAS  Google Scholar 

  • Moore, B., Charaf-Eddin, A., Planchat, A., Adamo, C., Autschbach, J., & Jacquemin, D. (2014). Electronic Band Shapes Calculated with Optimally Tuned Range-Separated Hybrid Functionals. Journal of Chemical Theory and Computation, 10(10), 4599.

    Article  CAS  Google Scholar 

  • Neugebauer, J., Curutchet, C., Munoz-Losa, A., & Mennucci, B. (2010). A Subsystem TDDFT Approach for Solvent Screening Effects on Excitation Energy Transfer Couplings. Journal of Chemical Theory and Computation, 6(6), 1843.

    Article  CAS  Google Scholar 

  • Niehaus, T. A., Hofbeck, T., & Yersin, H. (2015). Charge-transfer excited states in phosphorescent organo-transition metal compounds: a difficult case for time dependent density functional theory? RSC Advanced, 5, 63318.

    Article  CAS  Google Scholar 

  • Peach, M. J. G., Benfield, P., Helgaker, T., & Tozer, D. J. (2008). Excitation energies in density functional theory: An evaluation and a diagnostic test. Journal of Chemical Physics, 128, 044118.

    Article  Google Scholar 

  • Presti, D., Labat, F., Pedone, A., Frisch, M. J., Hratchian, H. P., Ciofini, I., Menziani, M. C., & Adamo, C. (2014). Computational Protocol for Modeling Thermochromic Molecular Crystals: Salicylidene Aniline As a Case Study. Journal of Chemical Theory and Computation, 10, 5577.

    Article  CAS  Google Scholar 

  • Runge, E., & Gross, E. K. U. (1984). Density-Functional Theory for Time-Dependent Systems. Physical Review Letters, 52, 997.

    Article  CAS  Google Scholar 

  • Sanchez-Garcia, E., Doerr, M., & Thiel, W. (2010). QM/MM study of the absorption spectra of DsRed.M1 chromophores. Journal of Computational Chemistry, 31(8), 1603.

    Google Scholar 

  • Santoro, F., Lami, A., Improta, R., Bloino, J., & Barone, V. (2008). Effective method for the computation of optical spectra of large molecules at finite temperature including the Duschinsky and Herzberg–Teller effect: The QxQx band of porphyrin as a case study. Journal of Chemical Physics, 128, 224311.

    Article  Google Scholar 

  • Santos, A. R., Escudero, D., González, L., & Orellana, G. (2015). Unravelling the Quenching Mechanisms of a Luminescent RuII Probe for CuII. Chemistry – An Asian Journal, 10(3), 622.

    Article  CAS  Google Scholar 

  • Scalmani, G., Frisch, M. J., Mennucci, B., Tomasi, J., Cammi, R., & Barone, V. (2006). Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. Journal of Chemical Physics, 124, 094107.

    Article  Google Scholar 

  • Send, R., Kühn, M., & Furche, F. (2011). Assessing Excited State Methods by Adiabatic Excitation Energies. Journal of Chemical Theory and Computation, 7(8), 2376.

    Article  CAS  Google Scholar 

  • Senn, H. M., & Thiel, W. (2009). QM/MM Methods for Biomolecular Systems. Angewandte Chemie International Edition, 48(7), 1198.

    Article  CAS  Google Scholar 

  • Söderhjelm, P., Husberg, C., Strambi, A., Olivucci, M., & Ryde, U. (2009). Protein Influence on Electronic Spectra Modeled by Multipoles and Polarizabilities. Journal of Chemical Theory and Computation, 5, 649.

    Article  Google Scholar 

  • Srebro, M., & Autschbach, J. (2012). Does a Molecule-Specific Density Functional Give an Accurate Electron Density? The Challenging Case of the CuCl Electric Field Gradient. Journal of Physical Chemistry Letters, 3, 576.

    Article  CAS  Google Scholar 

  • Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum Mechanical Continuum Solvation Models. Chemistry Reviews, 105, 2999.

    Article  CAS  Google Scholar 

  • Ullrich, C. (2012). Time-dependent density-functional theory: Concepts and applications (Oxford graduate texts). New York: Oxford University Press.

    Google Scholar 

  • Vlček, A., Jr., & Záliš, S. (2007). Modeling of charge-transfer transitions and excited states in d6 transition metal complexes by DFT techniques. Coordination Chemistry Reviews, 251(3–4), 258. A Special Issue Highlighting the Many Aspects of the Electronic Spectrosocpy of Inorganic Compounds.

    Google Scholar 

  • Wang, F., Ziegler, T., van Lenthe, E., van Gisbergen, S., & Baerends, E. J. (2005). The calculation of excitation energies based on the relativistic two-component zeroth-order regular approximation and time-dependent density-functional with full use of symmetry. The Journal of Chemical Physics, 122(20), 204103.

    Article  Google Scholar 

  • Wiggins, P., Gareth Williams, J. A., & Tozer, D. J. (2009). Excited state surfaces in density functional theory: A new twist on an old problem. Journal of Chemical Physics, 131, 091101.

    Article  Google Scholar 

  • Ziegler, T., Krykunov, M., Seidu, I., & Park, Y. (2015). Constricted Variational Density Functional Theory Approach to the Description of Excited States. In N. Ferré, M. Filatov, & M. Huix-Rotllant (Eds.), Density-functional methods for excited states (Topics in Current Chemistry, vol 368, pp. 61–95). Berlin/Heidelberg: Springer. doi:10.1007/128_2014_611.

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors are indebted to many colleagues and collaborators for exciting discussions and joint works in the field. D.E. and D.J. acknowledges the European Research Council (ERC) for financial support in the framework of a Starting Grant (Marches – 278845).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel Escudero , Adèle D. Laurent or Denis Jacquemin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Escudero, D., Laurent, A., Jacquemin, D. (2017). Time-Dependent Density Functional Theory: A Tool to Explore Excited States. In: Leszczynski, J., Kaczmarek-Kedziera, A., Puzyn, T., G. Papadopoulos, M., Reis, H., K. Shukla, M. (eds) Handbook of Computational Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-27282-5_43

Download citation

Publish with us

Policies and ethics