Skip to main content
Log in

Modeling stoichiometric and oxygen defective TiO2 anatase bulk and (101) surface: structural and electronic properties from hybrid DFT

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

We present a periodic hybrid DFT investigation of the structural and electronic properties of both stoichiometric and oxygen-defective TiO2 anatase bulk and (101) surface, in singlet and triplet spin states. In all cases, an excellent agreement with available photoelectron spectroscopy data has been obtained, reproducing the offsets of the deep defect levels positions from the conduction band minimum of TiO2 created upon oxygen vacancy (VO) formation. For the bulk, different local structural polaronic distortions around the VO site have been evidenced depending on the spin state considered. Although a similar conclusion has been drawn for the defective surface for the nine different vacancy positions which have been considered, large migration of the twofold coordinated surface O atom has also been evidenced, up to the initial vacancy site in some cases. The very good agreement obtained with available experimental data regarding the offsets from the conduction band minimum of the deep defect levels positions both for the bulk and the (101) surface of TiO2 anatase is encouraging for the application of the proposed hybrid-based computational strategy to TiO2 surface-related processes such as TiO2-based photocatalysis in which oxygen vacancies are known to play a key role.

Methods

All calculations have been performed with Crystal17, considering different hybrid functionals with both effective core pseudopotentials and all-electron atom-centered basis sets, as well as additional empirical dispersion effects with the D2 and D3 models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All numerical data available from the corresponding author upon request.

References

  1. Pantelides ST (1978) The electronic structure of impurities and other point defects in semiconductors. Rev Mod Phys 50:797–858. https://doi.org/10.1103/RevModPhys.50.797

    Article  CAS  Google Scholar 

  2. Queisser HJ, Haller EE (1998) Defects in semiconductors: some fatal, some vital. Science 281:945–950. https://doi.org/10.1126/science.281.5379.945

    Article  CAS  PubMed  Google Scholar 

  3. Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf Sci Rep 62:219–270. https://doi.org/10.1016/j.surfrep.2007.03.002

    Article  CAS  Google Scholar 

  4. Pacchioni G (2008) Modeling doped and defective oxides in catalysis with density functional theory methods: room for improvements. J Chem Phys 128:182505. https://doi.org/10.1063/1.2819245

    Article  CAS  PubMed  Google Scholar 

  5. Gunkel F, Christensen DV, Chen YZ, Pryds N (2020) Oxygen vacancies: the (in) visible friend of oxide electronics. Appl Phys Lett 116:120505. https://doi.org/10.1063/1.5143309

    Article  CAS  Google Scholar 

  6. Hwang HY, Iwasa Y, Kawasaki M et al (2012) Emergent phenomena at oxide interfaces. Nat Mater 11:103–113. https://doi.org/10.1038/nmat3223

    Article  CAS  PubMed  Google Scholar 

  7. Yim CM, Pang CL, Thornton G (2010) Oxygen vacancy origin of the surface band-gap state of TiO2 (110). Phys Rev Lett 104:036806. https://doi.org/10.1103/PhysRevLett.104.036806

    Article  CAS  PubMed  Google Scholar 

  8. Padervand M, Salari H, Ahmadvand S, Gholami MR (2012) Removal of an organic pollutant from waste water by photocatalytic behavior of AgX/TiO2 loaded on mordenite nanocrystals. Res Chem Intermed 38:1975–1985. https://doi.org/10.1007/s11164-012-0519-8

    Article  CAS  Google Scholar 

  9. Wang Y, Liu L, Xu L et al (2013) Ag/TiO2 nanofiber heterostructures: Highly enhanced photocatalysts under visible light. J Appl Phys 113:174311. https://doi.org/10.1063/1.4803844

    Article  CAS  Google Scholar 

  10. Divya S, Thankappan A, Vallabhan CPG et al (2014) Electrolyte/photoanode engineered performance of TiO2 based dye sensitised solar cells. J Appl Phys 115:064501. https://doi.org/10.1063/1.4864021

    Article  CAS  Google Scholar 

  11. Salaoru I, Prodromakis T, Khiat A, Toumazou C (2013) Resistive switching of oxygen enhanced TiO2 thin-film devices. Appl Phys Lett 102:013506. https://doi.org/10.1063/1.4774089

    Article  CAS  Google Scholar 

  12. Elahifard MR, Rahimnejad S, Pourbaba R et al (2011) Photocatalytic mechanism of action of apatite-coated Ag/AgBr/TiO2 on phenol and Escherichia coli and Bacillus subtilis bacteria Under Various Conditions. Prog React Kinet Mech 36:38–52. https://doi.org/10.3184/146867810X12925913885187

    Article  CAS  Google Scholar 

  13. Elahifard M, Heydari H, Behjatmanesh-Ardakani R et al (2020) A computational study on the effect of Ni impurity and O-vacancy on the adsorption and dissociation of water molecules on the surface of anatase (101). J Phys Chem Solids 136:109176. https://doi.org/10.1016/j.jpcs.2019.109176

    Article  CAS  Google Scholar 

  14. Wu J-M, Chen C-J (1990) Effect of powder characteristics on microstructures and dielectric properties of (Ba, Nb)-doped titania ceramics. J Am Ceram Soc 73:420–424. https://doi.org/10.1111/j.1151-2916.1990.tb06528.x

    Article  CAS  Google Scholar 

  15. Siefering KL, Griffin GL (1990) Growth Kinetics of CVD TiO2: influence of Carrier Gas. J Electrochem Soc 137:1206–1208. https://doi.org/10.1149/1.2086632

    Article  CAS  Google Scholar 

  16. Etacheri V, Seery MK, Hinder SJ, Pillai SC (2011) Oxygen rich titania: a dopant free, high temperature stable, and visible-light active anatase photocatalyst. Adv Funct Mater 21:3744–3752. https://doi.org/10.1002/adfm.201100301

    Article  CAS  Google Scholar 

  17. Schaub R, Thostrup P, Lopez N et al (2001) Oxygen vacancies as active sites for water dissociation on rutile TiO2 (110). Phys Rev Lett 87:266104. https://doi.org/10.1103/PhysRevLett.87.266104

    Article  CAS  PubMed  Google Scholar 

  18. Fukui K, Onishi H, Iwasawa Y (1997) Atom-resolved image of the TiO2 (110) surface by noncontact atomic force microscopy. Phys Rev Lett 79:4202–4205. https://doi.org/10.1103/PhysRevLett.79.4202

    Article  CAS  Google Scholar 

  19. Wendt S, Schaub R, Matthiesen J et al (2005) Oxygen vacancies on TiO2(110) and their interaction with H2O and O2: a combined high-resolution STM and DFT study. Surf Sci 598:226–245. https://doi.org/10.1016/j.susc.2005.08.041

    Article  CAS  Google Scholar 

  20. Hagfeldt A, Graetzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68. https://doi.org/10.1021/cr00033a003

    Article  CAS  Google Scholar 

  21. Watanabe T, Nakajima A, Wang R et al (1999) Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films 351:260

    Article  CAS  Google Scholar 

  22. Sumita T, Yamaki T, Yamamoto S, Miyashita A (2002) Photo-induced surface charge separation of highly oriented TiO2 anatase and rutile thin films. Appl Surf Sci 200:21

    Article  CAS  Google Scholar 

  23. Cheng H, Selloni A (2009) Surface and subsurface oxygen vacancies in anatase TiO2 and differences with rutile. Phys Rev B 79:092101. https://doi.org/10.1103/PhysRevB.79.092101

    Article  CAS  Google Scholar 

  24. Roldán A, Boronat M, Corma A, Illas F (2010) Theoretical confirmation of the enhanced facility to increase oxygen vacancy concentration in TiO2 by iron doping. J Phys Chem C 114:6511–6517. https://doi.org/10.1021/jp911851h

    Article  CAS  Google Scholar 

  25. Deák P, Kullgren J, Frauenheim T (2014) Polarons and oxygen vacancies at the surface of anatase TiO2: Polarons and oxygen vacancies at the surface of anatase TiO2. Phys Status Solidi RRL - Rapid Res Lett 8:583–586. https://doi.org/10.1002/pssr.201409139

    Article  CAS  Google Scholar 

  26. Mori-Sánchez P, Cohen AJ, Yang W (2008) Localization and delocalization errors in density functional theory and implications for band-gap prediction. Phys Rev Lett 100:146401. https://doi.org/10.1103/PhysRevLett.100.146401

    Article  CAS  PubMed  Google Scholar 

  27. Na-Phattalung S, Smith MF, Kim K et al (2006) First-principles study of native defects in anatase TiO2. Phys Rev B 73:125205. https://doi.org/10.1103/PhysRevB.73.125205

    Article  CAS  Google Scholar 

  28. Osorio-Guillén J, Lany S, Zunger A (2008) Atomic control of conductivity versus ferromagnetism in wide-gap oxides via selective doping: V, Nb, Ta in Anatase TiO2. Phys Rev Lett 100:036601. https://doi.org/10.1103/PhysRevLett.100.036601

    Article  CAS  PubMed  Google Scholar 

  29. Finazzi E, Di Valentin C, Pacchioni G, Selloni A (2008) Excess electron states in reduced bulk anatase TiO2: comparison of standard GGA, GGA+U, and hybrid DFT calculations. J Chem Phys 129:154113. https://doi.org/10.1063/1.2996362

    Article  CAS  PubMed  Google Scholar 

  30. Di Valentin C, Pacchioni G, Selloni A (2006) Electronic structure of defect states in hydroxylated and reduced rutile TiO2 (110) Surfaces. Phys Rev Lett 97:166803. https://doi.org/10.1103/PhysRevLett.97.166803

    Article  CAS  PubMed  Google Scholar 

  31. Di Valentin C, Pacchioni G, Selloni A (2009) Reduced and n-type doped TiO2 : nature of Ti3+ species. J Phys Chem C 113:20543–20552. https://doi.org/10.1021/jp9061797

    Article  CAS  Google Scholar 

  32. Yamamoto T, Ohno T (2012) A hybrid density functional study on the electron and hole trap states in anatase titanium dioxide. Phys Chem Chem Phys 14:589–598. https://doi.org/10.1039/C1CP21547G

    Article  CAS  PubMed  Google Scholar 

  33. Li H, Guo Y, Robertson J (2015) Calculation of TiO2 surface and subsurface oxygen vacancy by the screened exchange functional. J Phys Chem C 119:18160–18166. https://doi.org/10.1021/acs.jpcc.5b02430

    Article  CAS  Google Scholar 

  34. Ha M-A, Alexandrova AN (2016) Oxygen vacancies of anatase(101): extreme sensitivity to the density functional theory method. J Chem Theory Comput 12:2889–2895. https://doi.org/10.1021/acs.jctc.6b00095

    Article  CAS  PubMed  Google Scholar 

  35. Aryasetiawan F, Gunnarsson O (1998). The GW method. Rep Prog Phys 61:237–312. https://doi.org/10.1088/0034-4885/61/3/002

    Article  CAS  Google Scholar 

  36. Malashevich A, Jain M, Louie SG (2014) First-principles DFT + GW study of oxygen vacancies in rutile TiO2. Phys Rev B 89:075205. https://doi.org/10.1103/PhysRevB.89.075205

    Article  CAS  Google Scholar 

  37. Hao Y, Chen T, Zhang X et al (2019) Ti-Ti σ bond at oxygen vacancy inducing the deep defect level in anatase TiO2 (101) surface. J Chem Phys 150:224702. https://doi.org/10.1063/1.5108595

    Article  CAS  PubMed  Google Scholar 

  38. Cheng H, Selloni A (2009) Energetics and diffusion of intrinsic surface and subsurface defects on anatase TiO2(101). J Chem Phys 131:054703. https://doi.org/10.1063/1.3194301

    Article  CAS  PubMed  Google Scholar 

  39. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215. https://doi.org/10.1063/1.1564060

    Article  CAS  Google Scholar 

  40. Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys 125:224106. https://doi.org/10.1063/1.2404663

    Article  CAS  PubMed  Google Scholar 

  41. Thomas AG, Flavell WR, Mallick AK et al (2007) Comparison of the electronic structure of anatase and rutile TiO2 single-crystal surfaces using resonant photoemission and x-ray absorption spectroscopy. Phys Rev B 75:035105. https://doi.org/10.1103/PhysRevB.75.035105

    Article  CAS  Google Scholar 

  42. Morgan BJ, Watson GW (2007) A DFT+U description of oxygen vacancies at the TiO2 rutile (110) surface. Surf Sci 601:5034–5041. https://doi.org/10.1016/j.susc.2007.08.025

    Article  CAS  Google Scholar 

  43. Liechtenstein AI, Anisimov VI, Zaanen J (1995) Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys Rev B 52:R5467–R5470. https://doi.org/10.1103/PhysRevB.52.R5467

    Article  CAS  Google Scholar 

  44. Dudarev SL, Botton GA, Savrasov SY et al (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys Rev B 57:1505–1509. https://doi.org/10.1103/PhysRevB.57.1505

    Article  CAS  Google Scholar 

  45. Dovesi R, Erba A, Orlando R et al (2018) Quantum-mechanical condensed matter simulations with CRYSTAL. WIREs Comput Mol Sci 8:e1360. https://doi.org/10.1002/wcms.1360

    Article  CAS  Google Scholar 

  46. Dovesi R, Pascale F, Civalleri B et al (2020) The CRYSTAL code, 1976–2020 and beyond, a long story. J Chem Phys 152:204111. https://doi.org/10.1063/5.0004892

    Article  CAS  PubMed  Google Scholar 

  47. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys 110:6158–6170. https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  48. Perdew JP, Burke K, Ernzerhof M (1996) Generalized Gradient Approximation Made Simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  49. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  50. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  51. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. https://doi.org/10.1002/jcc.20495

    Article  CAS  PubMed  Google Scholar 

  52. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  53. Durand P, Barthelat J-C (1975) A theoretical method to determine atomic pseudopotentials for electronic structure calculations of molecules and solids. Theor Chim Acta 38:283–302. https://doi.org/10.1007/BF00963468

    Article  CAS  Google Scholar 

  54. Barthelat JC, Durand P, Serafini A (1977) Non-empirical pseudopotentials for molecular calculations. Mol Phys 33:159–180. https://doi.org/10.1080/00268977700103141

    Article  CAS  Google Scholar 

  55. Berthelat J, Durand P (1978) Recent progress of pseudopotential methods in quantum chemistry. Gazzetta Chim Ital 108:225–236

    CAS  Google Scholar 

  56. Labat F, Ciofini I, Adamo C (2012) Revisiting the importance of dye binding mode in dye-sensitized solar cells: a periodic viewpoint. J Mater Chem 22:12205–12211. https://doi.org/10.1039/C2JM31119D

    Article  CAS  Google Scholar 

  57. Labat F, Baranek P, Domain C et al (2007) Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes: Performances of different exchange-correlation functionals. J Chem Phys 126:154703. https://doi.org/10.1063/1.2717168

    Article  CAS  PubMed  Google Scholar 

  58. Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, D’Arco P, Llunell M, Causà M, Noël Y, Maschio L, Erba A, Rerat M, Casassa S (2017) CRYSTAL17 User’s Manual, University of Torino, Torino

  59. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  60. Sanches FF, Mallia G, Liborio L et al (2014) Hybrid exchange density functional study of vicinal anatase TiO2 surfaces. Phys Rev B 89:245309. https://doi.org/10.1103/PhysRevB.89.245309

    Article  CAS  Google Scholar 

  61. Burdett JK, Hughbanks T, Miller GJ et al (1987) Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J Am Chem Soc 109:3639–3646. https://doi.org/10.1021/ja00246a021

    Article  CAS  Google Scholar 

  62. Tang H, Berger H, Schmid PE et al (1993) Photoluminescence in TiO2 anatase single crystals. Solid State Commun 87:847–850. https://doi.org/10.1016/0038-1098(93)90427-O

    Article  CAS  Google Scholar 

  63. Labat F, Baranek P, Adamo C (2008) Structural and electronic properties of selected rutile and anatase TiO2 surfaces: an ab Initio Investigation. J Chem Theory Comput 4:341–352. https://doi.org/10.1021/ct700221w

    Article  CAS  PubMed  Google Scholar 

  64. Setvin M, Schmid M, Diebold U (2015) Aggregation and electronically induced migration of oxygen vacancies in TiO2 anatase. Phys Rev B 91:195403. https://doi.org/10.1103/PhysRevB.91.195403

    Article  CAS  Google Scholar 

  65. Jackman MJ, Deák P, Syres KL, et al (2014) Observation of vacancy-related polaron states at the surface of anatase and rutile TiO2 by high-resolution photoelectron spectroscopy. https://doi.org/10.48550/arXiv.1406.3385

Download references

Acknowledgements

The authors acknowledge the use of computational resources at Très Grand Centre de Calcul (TGCC) provided by GENCI (project A0050810135).

Funding

Z.W. has been awarded a PhD grant from the Chinese Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Contributions

Z.W. prepared the first version of the article and all corresponding figures and tables. F. L. revised the article and supervised the work.

Corresponding author

Correspondence to Frédéric Labat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Labat, F. Modeling stoichiometric and oxygen defective TiO2 anatase bulk and (101) surface: structural and electronic properties from hybrid DFT. J Mol Model 29, 174 (2023). https://doi.org/10.1007/s00894-023-05584-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05584-7

Keywords

Navigation