Skip to main content
Log in

Regulation of external electric field on sensitivity of ICM energetic materials

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

[2,2′-Bi(1,3,4-oxadiazole)]-5,5′-dinitramide (ICM-101), 2,4,6-triamino-5-nitropyrimidine-1,3-dioxide (ICM-102), and 6-nitro-7-azido-pyrazol[3,4-d][1,2,3]triazine-2-oxide (ICM-103) are excellent China-made explosives, but their performance under external electric fields (EEF) has never been explored, especially sensitivity. To study the induction effect of EEF on it, the chemical reactivity, electron localization function (ELF), spectrum, and other parameters were calculated by density functional theory. The results show that the increasing EEF can weaken the EHOMO-LUMO (EHOMO-LUMO = EHOMO-ELUMO) materials, making the stability worse and the sensitivity higher. The proportion of the positive electrostatic surface potential area is also smaller under the increasing EEF, indicating that ICM molecules are becoming more and more unstable. The ELF and localized orbital locator (LOL) decrease with the increase of EEF strength, which suggests that the trigger bond length increases, the EBDE decreases, and the molecular sensitivity increases. When the intensity of EEF increases, the absorption peak of the molecular spectrum gradually redshifts, and even a weak new absorption peak appears, indicating that the color of the material may change. Finally, EEF strength affects electron density, nitro charge, and chemical reactivity parameters.

Methods

Gaussian 16 software was used for calculation. The calculation levels are B3LYP/6-311G+ (d, p) and B3LYP/Def2-TZVPP. The optimized structure has a local true minimum energy on the potential energy surface and no imaginary frequency. Multiwfn 3.8 and VMD 1.9.3 were used in this work to analyze the ICM series of energetic material wave functions. The strength range of EEF is 0.000–0.016 a.u., and the increasing gradient is 0.002 a.u.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

We confirm the availability of all the data and materials in this manuscript. The manuscript has full control of all primary data, and the authors agree to allow the journal to review their data if requested.

References

  1. Tao Y, Xu J, Zhang H et al (2021) Thermal expansion characteristic of a new type high energy explosive ICM-101. Chin J Energetic Mater 29(7):641–649

    CAS  Google Scholar 

  2. Wang P, Xu Y, Lin Q, Lu M (2018) Recent advances in the syntheses and properties of polynitrogen pentazolate anion cyclo-N5- and its derivatives. Chem Soc Rev 47:7522–7538

    Article  CAS  PubMed  Google Scholar 

  3. Guo S, Ding K, Bu J et al (2021) Review on the molecular cage in the preparation of novel energetic compounds. Chin J Energetic Mater 29(12):1216–1228

    CAS  Google Scholar 

  4. Sun KB, Zhang SH, Ren FD, Hao YP, Ba SH (2021) Theoretical prediction of the trigger linkage, cage strain, and explosive sensitivity of CL-20 in the external electric fields. J Mol Model 27(3):85

    Article  CAS  PubMed  Google Scholar 

  5. Rodzevich AP, Gazenaur EG, Kuzmina LV, Krasheninin VI, Gazenaur NV (2017) The effect of electric field on the explosive sensitivity of silver azide, J Phys: Conf Ser 830 012131. https://doi.org/10.1088/1742-6596/830/1/012131

  6. Borisenok VA, Mikhailov AS, Bragunets VA (2011) Investigation of the polarization of explosives during impact and the influence of an external electric field on the impact sensitivity of superfine PETN. Russ J Phys Chem B 5(4):628–639

    Article  CAS  Google Scholar 

  7. Wang J, Zhai D, Ma P, Ma C, Pan Y, Jiang J, Zhu S (2020) Theoretical insight into the effects of external electric field on cocrystal HMX/DMI Chin. J Explos Propellants 43:133–138

    Google Scholar 

  8. Ren F (2015) Theoretical insight into the explosive sensitivity of several explosive in external electric field, North University of China.

  9. Ren F-D, Cao D-L, Shi W-J, You M (2017) A dynamic prediction of stability for nitromethane in external electric field. RSC Adv 7(74):47063–47072

    Article  CAS  Google Scholar 

  10. Miao F, Cheng X (2019) Effect of electric field on polarization and decomposition of RDX molecular crystals: a ReaxFF molecular dynamics study. J Mol Model 26(1):2

    Article  PubMed  Google Scholar 

  11. Ren FD, Shi WJ, Cao DL, Li YX, Zhang DH, Wang XF, Shi ZY (2020) External electric field reduces the explosive sensitivity: a theoretical investigation into the hydrogen transference kinetics of the NH2NO2H2O complex. J Mol Model 26(12):351

    Article  CAS  PubMed  Google Scholar 

  12. Tao Y, Wang Q, Sun K, Zhang Q, Liu W, Du J, Liu Z (2020) The molecular structure, spectroscopic features and electronic properties of tioxolone under the external electric field. Spectrochim Acta A Mol Biomol Spectrosc 231:118108

    Article  CAS  PubMed  Google Scholar 

  13. Politzer P, Murray JS (2009) Computed effects of electric fields upon the C-NO2and N-NO2bonds of nitromethane and dimethylnitramine. Int J Quantum Chem 109(1):3–7

    Article  CAS  Google Scholar 

  14. Politzer P, Murray JS, Concha MC, Lane P (2007) Effects of electric fields upon energetic molecules: nitromethane and dimethylnitramine. Cent Eur J Energetic Mater 4(4):3–21

    CAS  Google Scholar 

  15. Ping L, Zhang C, Ren F, Cao Q, Li X, Cao R (2017) Theoretical insight into the structure and stability of TNT and RDX in external electric field. Indian J Pure Appl Phys 55:604–615

    Google Scholar 

  16. Lv L, Wei Y, Tao Z, Yang F, Wu D, Yang M (2017) Effect of an external electric field on the C N cleavage reactions in nitromethane and triaminotrinitrobenzene. Comput Theor Chem 1117:215–219

    Article  CAS  Google Scholar 

  17. Politzer P, Murray JS, Lane P (2009) Computational determination of effects of electric fields upon “Trigger Linkages” of prototypical energetic molecules. Int J Quantum Chem 109:534–539

    Article  CAS  Google Scholar 

  18. Hao L, Wang J, Zhai D, Ma P, Ma C, Pan Y, Jiang J (2020) Theoretical study on CL-20-based cocrystal energetic compounds in an external electric field. ACS Omega 5(24):14767–14775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu X, Zhang R, Xia W, Ma P, Ma C, Pan Y, Jiang J (2022) Density functional theory study of CL-20/Nitroimidazoles energetic cocrystals in an external electric field. Comput Theor Chem 1209. https://doi.org/10.1016/j.comptc.2022.113607

  20. Zhang R, Xia W, Xu X, Ma P, Ma C (2022) Theoretical study on BTF-based cocrystals: effect of external electric field. J Mol Model 28(7):185

    Article  PubMed  Google Scholar 

  21. Zhang W, Zhang J, Deng M, Qi X, Nie F, Zhang Q (2017) A promising high-energy-density material. Nat Commun 8(1):181

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hermann TS, Karaghiosoff K, Klapotke TM, Stierstorfer J (2017) Synthesis and characterization of 2,2’-Dinitramino-5,5’-bi(1-oxa-3,4-diazole) and derivatives as economic and highly dense energetic materials. Chem 23(50):12087–12091

    Article  CAS  Google Scholar 

  23. Chi Y, Liao L, Yu Q, Zhao C, Fan G (2020) Kinetics and mechanism of decomposition induced by solvent evolution in ICM-101 solvates: solvent-evolution-induced low-temperature decomposition. Phys Chem Chem Phys 22(6):3563–3569

    Article  CAS  PubMed  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, FoxGaussian DJ (2016) 16. Rev. C.01, Wallingford, CT.

  25. Ma P, Pan Y, Jiang J, Zhu S (2018) Molecular dynamic simulation and density functional theory insight into the nitrogen rich explosive 1,5-diaminotetrazole (DAT). Procedia Eng 211:546–554

    Article  CAS  Google Scholar 

  26. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  27. He P, Zhang JG, Wang K, Yin X, Jin X, Zhang TL (2015) Extensive theoretical studies on two new members of the FOX-7 family: 5-(dinitromethylene)-1,4-dinitramino-tetrazole and 1,1’-dinitro-4,4’-diamino-5,5’-bitetrazole as energetic compounds. Phys Chem Chem Phys 17(8):5840–5848

    Article  CAS  PubMed  Google Scholar 

  28. Stobiecka A, Sikora M, Bonikowski R, Kula J (2016) An exploratory study on the peroxyl-radical-scavenging activity of 2,6-dimethyl-5-hepten-2-ol and its heterocyclic analogues. J Mol Struct 1107:82–90

    Article  CAS  Google Scholar 

  29. Li Y, Evans JNS (1995) The fukui function: a key concept linking frontier molecular orbital theory and the hard-soft-acid-base principle. J Am Chem Soc 117:7756–7759

    Article  CAS  Google Scholar 

  30. Zhai D, Wang J, Hao L, Ma C, Ma P, Pan Y, Jiang J (2019) Molecular design and properties of bridged energetic pyridines derivatives. RSC Adv 9(65):37747–37758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dhamodharan P, Sathya K, Dhandapani M (2017) Physico-chemical characterization, density functional theory (DFT) studies and Hirshfeld surface analysis of a new organic optical material: 1H-benzo[d]imidazol-3-ium-2,4,6-trinitrobenzene-1,3 bis(olate). J Mol Struct 1146:782–792

    Article  CAS  Google Scholar 

  32. Koopmans TA (1933) Über die Zuordnung von Wellenfunktionen und Eigenwertenzu den Einzelnen Elektronen Eines Atoms. Physica 1:104–114

    Article  CAS  Google Scholar 

  33. Bader RFW (1990) atoms in molecules: quantum theory. Oxford University Press, Oxford

    Google Scholar 

  34. Brill TB, James KJ (1993) Kinetics and mechanisms of thermal decomposition of nitroaromatic explosives. Chem Rev 93:2667–2269

    Article  CAS  Google Scholar 

  35. Alkorta I, Elguero J (2004) Fluorine-fluorine interactions: NMR and AIM analysis. Struct Chem 15:117–120

    Article  CAS  Google Scholar 

  36. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  37. Schmider HL, Becke AD (2000) Chemical content of the kinetic energy density. J Mol Struct (Thoechem) 527:51–61

    Article  CAS  Google Scholar 

  38. Schmider HL, Becke AD (2002) Two functions of the density matrix and their relation to the chemical bond. J Chem Phys 116:3184–3193

    Article  CAS  Google Scholar 

  39. Xie Z-B, Hu S-Q, Cao X (2016) Theoretical insight into the influence of molecular ratio on the binding energy and mechanical property of HMX/2-picoline-N-oxide cocrystal, cooperativity effect and surface electrostatic potential. Mol Phys 114(14):2164–2176

    Article  CAS  Google Scholar 

  40. Politzer P, Murray JS (2021) Molecular electrostatic potentials: significance and applications. In: Chattaraj PK, Chakraborty D (eds) Chemical reactivity in confined systems. John Wiley & Sons, Ltd., Hoboken, NJ, USA, pp 113–134. https://doi.org/10.1002/9781119683353.ch7

  41. Zhai D, Ma C, Ma P, Pan Y, Hao L, Liu X, Jiang J (2021) Theoretical insight into different energetic groups on the performance of energetic materials featuring RDX ring. Fuel 294:120497

    Article  CAS  Google Scholar 

  42. Liu X, Wang J, Zhai D, Hao L, Ma P, Ma C (2021) Effects of external electric field on the sensitivity of cocrystal energetic materials of CL-20/TNT. J Nanjing Univ Technol: Nat Sci Ed 43(2):211–218

    Google Scholar 

Download references

Funding

This study was supported by the Natural Science Foundation of Jiangsu Province (NO. BK20220352). We are so grateful to the High-Performance Computing Center of Nanjing Tech University for doing the numerical calculations in this paper on its x-Flex enterprise blade cluster system.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. Renfa Zhang: Software, Data curation, Writing original draft. Meihua Zhao: Formal analysis. Wenxin Xia: Investigation, Validation. Peng Ma: Resources, Project administration. Congming Ma: Conceptualization, Methodology.

Corresponding authors

Correspondence to Peng Ma or Congming Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

We allow the journal to review all the data, and we confirm the validity of the results. There are no financial relationships. This work was not published previously and it is not submitted to more than one journal. It is also not split up into several parts to submit. No data have been fabricated or manipulated.

Consent to participate

All the authors agree to participate in this investigation.

Consent for publication

All the authors agree to publish the manuscript.

Conflict of interest

These authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2097 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Zhao, M., Xia, W. et al. Regulation of external electric field on sensitivity of ICM energetic materials. J Mol Model 29, 62 (2023). https://doi.org/10.1007/s00894-023-05452-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05452-4

Keywords

Navigation