Skip to main content
Log in

Structural, vibrational and electronic properties of some tetrel-bonded complexes of the fluorinated methanes methyl fluoride, difluoromethane and fluoroform: an ab initio study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A search has been conducted, by means of ab initio molecular orbital theory, for potential tetrel-bonded complexes formed between the fluorinated methanes methyl fluoride, difluoromethane and fluoroform, and the related hydrides ammonia, water, hydrogen fluoride, phosphine, hydrogen sulphide and hydrogen chloride. Eleven such complexes have been identified, six containing CH3F and five CH2F2. The complexes are typically less strongly bound than their hydrogen-bonded counterparts, and the interaction energies vary in a consistent way with the periodic trend of the electron donors. The intermolecular separations and changes of the relevant intramolecular bond lengths, the wavenumber shifts of the critical vibrational modes and the extents of charge transfer correlate, by and large, with the strengths of interaction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data and material presented in this paper should be made widely available.

Code availability

There are no issues regarding the use or availability of software.

References

  1. Arunan E (2013) Curr Sci 105:892–894

    Google Scholar 

  2. Mani D, Arunan E (2013) Phys Chem Chem Phys 15:14377–14383

    Article  CAS  PubMed  Google Scholar 

  3. Mani D, Arunan E (2014) J Phys Chem A 118:10081–10089

    Article  CAS  PubMed  Google Scholar 

  4. Mani, D. and Arunan, E (2015) in Scheiner, S (ed.), Noncovalent forces, challenges and advances in computational chemistry and physics 19, Springer International Publishing Switzerland, pp 323–356

  5. Hobza P, Müller-Dethlefs K (2010) Non-covalent interactions: theory and experiment. RSC Publishing, Cambridge, U.K., p 225

    Google Scholar 

  6. Bauza A, Mooibroek TJ, Frontera A (2013) Angew Chem Int Ed 52:12317–12321

    Article  CAS  Google Scholar 

  7. Grabowski SJ (2014) Phys Chem Chem Phys 16:1824–1834

    Article  CAS  PubMed  Google Scholar 

  8. Marin-Luna M, Alkorta I, Elguero J (2017) Theoret Chem Acc 136:41

    Article  Google Scholar 

  9. Ibrahim MAA, Moussa NAM, Safy MEA (2018) J Mol Model 24:219

    Article  PubMed  Google Scholar 

  10. Grabowski SJ (2018) Molecules 23:1183

    Article  PubMed Central  Google Scholar 

  11. Dumas, J.-M., Peurichard, H. and Gomel, M.J (1978) J Chem Res., Synopses, 54–57.

  12. Legon AC (2010) Phys Chem Chem Phys 12:7736–7747

    Article  CAS  PubMed  Google Scholar 

  13. Politzer P, Murray JS (2013) ChemPhysChem 14:278–294

    Article  CAS  PubMed  Google Scholar 

  14. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) Chem Rev 116:2478–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang W, Ji B, Zhang Y (2009) J Phys Chem A 113:8132–8135

    Article  PubMed  Google Scholar 

  16. Oliveira V, Cremer D, Kraka E (2017) J Phys Chem A 121:6845–6862

    Article  CAS  PubMed  Google Scholar 

  17. Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011) Chem Eur J 17:6034–6038

    Article  CAS  PubMed  Google Scholar 

  18. Scheiner S (2013) Accounts Chem Res 46:280–288

    Article  CAS  Google Scholar 

  19. Del Bene, J.E., Alkorta, I. and Elguero, J. (2015) Noncovalent forces – challenges and advances in computational chemistry and physics 19, Scheiner, S. (ed.), Springer International Publishing, Switzerland, pp 191–263

  20. Grabowski SJ (2015) Molecules 20:11297–11316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bauza A, Frontera A (2017) Theoret Chem Accounts 136:37

    Article  Google Scholar 

  22. Esrafili MD, Mousvian P (2018) Mol Phys 116:388–398

    Article  CAS  Google Scholar 

  23. Latimer WM, Rodebush WH (1920) J Am Chem Soc 42:1419–1423

    Article  CAS  Google Scholar 

  24. Shigorin DN (1959) Spectrochim Acta 14:198–212

    Article  CAS  Google Scholar 

  25. Yanez M, Sanz P, Mo O, Alkorta I, Elguero J (2009) J Chem Theory Comput 5:2763–2771

    Article  CAS  PubMed  Google Scholar 

  26. Bauza A, Frontera A (2015) Angew Chem Int Ed 54:7340–7343

    Article  CAS  Google Scholar 

  27. Ramasami P, Ford TA (2018) Mol Phys 116:1722–1736

    Article  CAS  Google Scholar 

  28. Ramasami P, Ford TA (2012) J Mol Structure 1023:163–169

    Article  CAS  Google Scholar 

  29. Hobza P, Havlas Z (2000) Chem Rev 100:4253–4264

    Article  CAS  PubMed  Google Scholar 

  30. Caminati W, Melandri S, Rossi I, Favero PG (1999) J Am Chem Soc 121:10098–10101

    Article  CAS  Google Scholar 

  31. Paulson SL, Barnes AJ (1982) J Mol Structure 80:151–158

    Article  CAS  Google Scholar 

  32. Fraser GT, Lovas FJ, Suenram RD, Nelson DD (1986) J Chem Phys 84:5983–5988

    Article  CAS  Google Scholar 

  33. Rutkowski KS, Herrebout WA, Melikova SM, Rodziewicz P, van der Veken BJ, Koll A (2005) Spectrochim Acta A 61:1595–1602

    Article  CAS  Google Scholar 

  34. Herrebout WA, Melikova SM, Delanoye SN, Rutkowski KS, Shchepkin DN, van der Veken BJ (2005) J Phys Chem A 109:3038–3044

    Article  CAS  PubMed  Google Scholar 

  35. Gopi R, Ramanathan N, Sundararajan K (2014) J Phys Chem A 118:5529–5539

    Article  CAS  PubMed  Google Scholar 

  36. Gopi R, Ramanathan N, Sundararajan K (2016) Chem Phys 476:36–45

    Article  CAS  Google Scholar 

  37. Gu Y, Kar T, Scheiner S (2000) J Mol Structure 552:17–31

    Article  CAS  Google Scholar 

  38. Wetmore SD, Schofield R, Smith DM, Radom L (2001) J Phys Chem A 195:8718–8726

    Article  Google Scholar 

  39. Alkorta I, Maluendes S (1995) J Phys Chem 99:6457–6460

    Article  CAS  Google Scholar 

  40. Gu Y, Kar T, Scheiner S (1999) J Am Chem Soc 121:9411–9422

    Article  CAS  Google Scholar 

  41. Scheiner S, Gu Y, Kar T (2000) J Mol Structure (Theochem) 500:441–452

    Article  CAS  Google Scholar 

  42. Monat JE, Toczylowski RR, Cybulski SM (2001) J Phys Chem A 105:9004–9013

    Article  CAS  Google Scholar 

  43. Scheiner S, Kar T (2002) J Phys Chem A 106:1784–1789

    Article  CAS  Google Scholar 

  44. Hyla-Kryspin I, Haufe G, Grimme S (2008) Chem Phys 346:224–236

    Article  CAS  Google Scholar 

  45. Rosenberg RE (2012) J Phys Chem A 116:10842–10849

    Article  CAS  PubMed  Google Scholar 

  46. Hobza P, Mulder F, Sandorfy C (1981) J Am Chem Soc 103:1360–1366

    Article  CAS  Google Scholar 

  47. Buckingham AD, Fowler PW (1985) Can J Chem 63:2018–2025

    Article  CAS  Google Scholar 

  48. Kryachko ES, Zeegers-Huyskens T (2001) J Phys Chem A 105:7118–7125

    Article  CAS  Google Scholar 

  49. Zierkiewicz W, Michalska D, Havlas Z, Hobza P (2002) ChemPhysChem 3:511–518

    Article  CAS  PubMed  Google Scholar 

  50. Li X, Liu L, Schlegel HB (2002) J Am Chem Soc 124:9639–9647

    Article  CAS  PubMed  Google Scholar 

  51. Alabugin IV, Manoharan M, Peabody S, Weinhold F (2003) J Am Chem Soc 125:5973–5987

    Article  CAS  PubMed  Google Scholar 

  52. Pejov L, Hermansson K (2003) J Chem Phys 119:313–324

    Article  CAS  Google Scholar 

  53. Rhee SK, Kim SH, Lee S, Lee JY (2004) Chem Phys 297:21–29

    Article  CAS  Google Scholar 

  54. Rodziewicz P, Rutkowski KS, Melikova SM, Koll A (2005) ChemPhysChem 6:1282–1292

    Article  CAS  PubMed  Google Scholar 

  55. Martins JBL, Politi JRS, Garcia E, Vilela AFA, Gargano R (2009) J Phys Chem A 113:14818–14823

    Article  CAS  PubMed  Google Scholar 

  56. Nguyen THM, Pham LN, Vien V, Duong TQ, Nguyen TT (2017) Int J Quantum Chem 117:25338

    Article  Google Scholar 

  57. Goodwin EJ, Legon AC (1986) J Chem Phys 84:1988–1995

    Article  CAS  Google Scholar 

  58. Ruoff RS, Emilsson T, Chuang C, Klots TD, Gutowsky HS (1989) J Chem Phys 90:4069–4078

    Article  CAS  Google Scholar 

  59. Caminati W, Melandri S, Moreschini P, Favero PG (1999) Angew Chem Int Ed 38:2924–2925

    Article  CAS  Google Scholar 

  60. Van der Veken BJ, Herrebout WA, Szostak R, Shchepkin DN, Havlas Z, Hobza P (2001) J Am Chem Soc 123:12290–12293

    Article  PubMed  Google Scholar 

  61. MacKenzie VJ, Steer RP (2001) Can J Phys 79:483–499

    Article  CAS  Google Scholar 

  62. Blanco S, Lopez JC, Lesarri A, Alonso JL (2002) J Mol Structure 612:255–260

    Article  CAS  Google Scholar 

  63. Melikova SM, Rutkowski KS, Rodziewicz P, Koll A (2002) Chem Phys Letters 352:301–310

    Article  CAS  Google Scholar 

  64. Van der Kerkhof T, Bouwen A, Goovaerts E, Herrebout WA, van der Veken BJ (2004) Phys Chem Chem Phys 6:358–362

    Article  Google Scholar 

  65. Melikova SM, Rutkowski KS, Rodziewicz P, Koll A (2004) J Mol Structure 705:49–61

    Article  CAS  Google Scholar 

  66. Rutkowski KS, Rodziewicz P, Melikova SM, Herrebout WA, van der Veken BJ, Koll A (2005) Chem Phys 313:225–243

    Article  CAS  Google Scholar 

  67. Delanoye SN, Herrebout WA, van der Veken BJ (2005) J Phys Chem A 109:9836–9843

    Article  CAS  PubMed  Google Scholar 

  68. Caminati W, Lopez JC, Alonso JL, Grabow J-U (2005) Angew Chem 117:3909–3912

    Article  Google Scholar 

  69. Serafin MM, Peebles RA, Peebles SA (2008) J Mol Spectrosc 250:1–7

    Article  CAS  Google Scholar 

  70. Favero LB, Giuliano BM, Maris A, Melandri S, Ottaviani P, Velino B, Caminati W (2010) Chem Eur J 16:1761–1764

    Article  CAS  PubMed  Google Scholar 

  71. Gopi R, Ramanathan N, Sundararajan K (2017) Spectrochim Acta A 181:137–147

    Article  CAS  Google Scholar 

  72. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Menucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven Y, Throssell K, Montgomery JA,Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB and Fox DJ (2016) Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA.

  73. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  74. Dunning TH Jr (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  75. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  76. Liu B, McLean AD (1973) J Chem Phys 59:4557–4558

    Article  CAS  Google Scholar 

  77. Boys SF, Bernardi F (1970) Mol Phys 19:553–556

    Article  CAS  Google Scholar 

  78. Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94:1887–1930

    Article  CAS  Google Scholar 

  79. Turney JM, Simmonett AC, Parrish RM, Hohenstein EG, Evangelista F, Fermann JT, Mintz BJ, Burns LA, Wilke JJ, Abrams ML, Russ NJ, Leininger ML, Janssen CL, Seidl ET, Allen WD, Schaefer III HF, King RA, Valeev EF, Sherrill CD and Crawford TD (2011) WIREs Comput. Mol. Sci., https://doi.org/10.1002/wcms.93.

  80. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  81. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM and Weinhold F (2010) NBO (Version 3.1) Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, U.S.A. http://www.chem.wisc.edu/⁓nbo5 (accessed 4 August 2010).

  82. Hunter EPL, Lias SG (1998) J Phys Chem Ref Data 27:413–656

    Article  CAS  Google Scholar 

  83. Haynes WM (Editor-in-Chief) (2010-2011) CRC Handbook of Chemistry and Physics, 91st edition (2010–2011), CRC Press, Boca Raton, FL, U.S.A., pp 10–189, 10–190

  84. Stone AJ (2017) J Phys Chem A 121:1531–1534

    Article  CAS  PubMed  Google Scholar 

  85. Scheiner S (2017) J Phys Chem A 121:5561–5568

    Article  CAS  PubMed  Google Scholar 

  86. Sethio D, Oliveira V, Kraka E (2018) Molecules 23:2763

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The grantholder acknowledges that any opinions, findings and conclusions or recommendations expressed in any publication generated by NRF-supported research are those of the authors and that the NRF accepts no liability in this regard. The authors also acknowledge the University of KwaZulu-Natal for financial assistance and the Centre for High Performance Computing (South Africa) for the use of computational resources, in particular Dr Anton Lopis for invaluable technical assistance.

Funding

This work is based on research supported in part by the National Research Foundation of South Africa (NRF) under Grant Number 2053648.

Author information

Authors and Affiliations

Authors

Contributions

The original proposal was formulated by TAF. Both PR and TAF contributed to the computational work in approximately equal measure. The original draft was written by TAF and approved by PR. Both authors contributed to the revision of the original work.

Corresponding author

Correspondence to Thomas A. Ford.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24.9 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramasami, P., Ford, T.A. Structural, vibrational and electronic properties of some tetrel-bonded complexes of the fluorinated methanes methyl fluoride, difluoromethane and fluoroform: an ab initio study. J Mol Model 28, 294 (2022). https://doi.org/10.1007/s00894-022-05285-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05285-7

Keywords

Navigation