Skip to main content
Log in

Investigating the stabilisation of IFN-α2a by replica exchange molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Current biopharmaceutical drugs are mainly a class of peptides or proteins that play an essential role in the treatment of many diseases. Such peptides/proteins are usually thermally unstable and may lose their bioactivity when exposed to ambient conditions. Therefore, they are not suitable for long-term storage. Lyophilisation is the most common method to prolong shelf life of solid peptide/protein drugs; however, the freeze-drying process can lead to irreversible damage. In the present study, human interferon-alpha 2a (IFN-α2a) was selected as a model protein drug; four disaccharides (β-lactose, β-maltose, sucrose, and trehalose) were selected as bioactive protectants. We investigated the effects of different protectants on IFN-α2a under various ambient conditions (vacuum, dry state, and aqueous solution) using replica exchange molecular dynamics simulation. The protective effect of β-maltose on IFN-α2a was the highest in aqueous solution and dry state, β-lactose showed a poor protective effect in all three conditions, the performance of sucrose was good in all conditions, and trehalose showed a better protective effect under vacuum conditions and in aqueous solution. Disaccharides form H-bonds with water, thereby preventing water from the tertiary structure of proteins. Trehalose forms strong H-bonds with water which explains its extraordinary stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this article.

Code availability

Not applicable.

References

  1. Ibraheem D, Elaissari A, Fessi H (2014) Administration strategies for proteins and peptides. Int J Pharm 477(1–2):578–589

    Article  CAS  PubMed  Google Scholar 

  2. Gervasi V, Dall Agnol R, Cullen S, McCoy T, Vucen S, Crean A (2018) Parenteral protein formulations: an overview of approved products within the European Union. Eur J Pharm Biopharm 131:8–24

    Article  CAS  PubMed  Google Scholar 

  3. Nezafat N, Sadraeian M, Rahbar MR, Khoshnoud MJ, Mohkam M, Gholami A, Banihashemi M, Ghasemi Y (2015) Production of a novel multi-epitope peptide vaccine for cancer immunotherapy in TC-1 tumor-bearing mice. Biologicals 43(1):11–17

    Article  CAS  PubMed  Google Scholar 

  4. Elsayed SA, Esmail MA, Ali RM, Mohafez OM (2019) Diagnostic and prognostic value of anti-CarP antibodies in a sample of Egyptian rheumatoid arthritis patients. Clin Rheumatol 38(10):2683–2689

    Article  PubMed  Google Scholar 

  5. Kumar S, Mason M (2012) Principles of cancer treatment by immunotherapy. Surg Infect (Larchmt) 30(4):198–202

    Google Scholar 

  6. Moeller EH, Jorgensen L (2008) Alternative routes of administration for systemic delivery of protein pharmaceuticals. Drug Discov Today Technol 5(2–3):e89-94

    Article  PubMed  Google Scholar 

  7. Malik NN (2008) Drug discovery: past, present and future. Drug Discovery Today 13(21–22):909–912

    Article  PubMed  Google Scholar 

  8. Jain D, Mahammad SS, Singh PP, Kodipyaka R (2019) A review on parenteral delivery of peptides and proteins. Drug Dev Ind Pharm 45(9):1403–1420

    Article  CAS  PubMed  Google Scholar 

  9. Wang W, Nema S, Teagarden D (2010) Protein aggregation–pathways and influencing factors. Int J Pharm 390(2):89–99

    Article  CAS  PubMed  Google Scholar 

  10. Hawe A, Wiggenhorn M, van de Weert M, Garbe JH, Mahler HC, Jiskoot W (2012) Forced degradation of therapeutic proteins. J Pharm Sci 101(3):895–913

    Article  CAS  PubMed  Google Scholar 

  11. Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS (2010) Stability of protein pharmaceuticals: an update. Pharm Res 27(4):544–575

    Article  PubMed  CAS  Google Scholar 

  12. Roberts CJ (2014) Protein aggregation and its impact on product quality. Curr Opin Biotechnol 30:211–217

    Article  CAS  PubMed  Google Scholar 

  13. Kasper JC, Winter G, Friess W (2013) Recent advances and further challenges in lyophilization. Eur J Pharm Biopharm 85(2):162–169

    Article  CAS  PubMed  Google Scholar 

  14. Chang LL, Pikal MJ (2009) Mechanisms of protein stabilization in the solid state. J Pharm Sci 98(9):2886–2908

    Article  CAS  PubMed  Google Scholar 

  15. Wang W (2000) Lyophilization and development of solid protein pharmaceuticals. Int J Pharm 203(1–2):1–60

    Article  CAS  PubMed  Google Scholar 

  16. Wang W, Ohtake S (2019) Science and art of protein formulation development. Int J Pharm 568:118505

    Article  CAS  PubMed  Google Scholar 

  17. Arakawa T, Prestrelsk SJ, Kenney WC, Carpenter JF (2001) Factors affecting short-term and long-term stabilitiesqof proteins. Adv Drug Deliv Rev 2001(46):307–326

    Article  Google Scholar 

  18. Wang W (2015) Advanced protein formulations. Protein Sci 24(7):1031–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jorgensen L, Hostrup S, Moeller EH, Grohganz H (2009) Recent trends in stabilising peptides and proteins in pharmaceutical formulation – considerations in the choice of excipients. Expert Opinion 6(11):1219–1230

    CAS  Google Scholar 

  20. Abrantes CG, Duarte D, Reis CP (2016) An overview of pharmaceutical excipients: safe or not safe? J Pharm Sci 105(7):2019–2026

    Article  CAS  PubMed  Google Scholar 

  21. Abbas SA, Sharma VK, Patapoff TW, Kalonia DS (2013) Characterization of antibody-polyol interactions by static light scattering: implications for physical stability of protein formulations. Int J Pharm 448(2):382–389

    Article  CAS  PubMed  Google Scholar 

  22. Mensink MA, Nethercott MJ, Hinrichs WLJ, van der Voort MK, Frijlink HW, Munson EJ, Pikal MJ (2016) Influence of miscibility of protein-sugar lyophilizates on their storage stability. AAPS J 18(5):1225–1232

    Article  CAS  PubMed  Google Scholar 

  23. Arsiccio A, Pisano R (2017) Stability of proteins in carbohydrates and other additives during freezing: the human growth hormone as a case study. J Phys Chem B 121(37):8652–8660

    Article  CAS  PubMed  Google Scholar 

  24. Ajito S, Iwase H, Takata SI, Hirai M (2018) Sugar-mediated stabilization of protein against chemical or thermal denaturation. J Phys Chem B 122(37):8685–8697

    Article  CAS  PubMed  Google Scholar 

  25. Fang X, Li D, Guo B, Yang C (2018) Bioactive structural protection of antibody etanercept. J University Shanghai Sci Technol 4(3):225–230

    Google Scholar 

  26. Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, Foster GR, Stark GR (2007) Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discovery 6(12):975–990

    Article  CAS  PubMed  Google Scholar 

  27. George PM, Badiger R, Alazawi W, Foster GR, Mitchell JA (2012) Pharmacology and therapeutic potential of interferons. Pharmacol Ther 135(1):44–53

    Article  CAS  PubMed  Google Scholar 

  28. Ding Y, Lou J, Chen H, Li X, Wu M, Li C, Liu J, Liu C, Li Q, Zhang H et al (2017) Tolerability, pharmacokinetics and antiviral activity of rHSA/IFNalpha2a for the treatment of chronic hepatitis B infection. Br J Clin Pharmacol 83(5):1056–1071

    Article  CAS  PubMed  Google Scholar 

  29. Tong MJ, Reddy KR, Lee WM, Pockros PJ, Hoefs JC, Keeffe EB, Hollinger FB, Hathcote EJ, White H, Foust RT et al (1997) Treatment of chronic hepatitis C with consensus interferon: a multicenter, randomized, controlled trial. Consensus Interferon Study Group Hepatol 26(3):747–754

    CAS  Google Scholar 

  30. Nagler A, Ackerstein A, Barak V (1994) SLAVIN S: Treatment of chronic myelogenous leukemia with recombinant human interleukin-2 and interferon-a2a. J Hematother 3(1):75–82

    Article  CAS  PubMed  Google Scholar 

  31. Montagner IM, Merlo A, Carpanese D, Dalla Pieta A, Mero A, Grigoletto A, Loregian A, Renier D, Campisi M, Zanovello P et al (2016) A site-selective hyaluronan-interferonalpha2a conjugate for the treatment of ovarian cancer. J Control Release 236:79–89

    Article  CAS  PubMed  Google Scholar 

  32. Kaminskas LM, Ascher DB, McLeod VM, Herold MJ, Le CP, Sloan EK, Porter CJ (2013) PEGylation of interferon alpha2 improves lymphatic exposure after subcutaneous and intravenous administration and improves antitumour efficacy against lymphatic breast cancer metastases. J Control Release 168(2):200–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hospital A, Goni JR, Orozco M, Gelpi JL (2015) Molecular dynamics simulations: advances and applications. Adv Appl Bioinform Chem 8:37–47

    PubMed  PubMed Central  Google Scholar 

  34. Bernardi RC, Melo MCR, Schulten K (2015) Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochim Biophys Acta 1850(5):872–877

    Article  CAS  PubMed  Google Scholar 

  35. Milani S, Faghihi H, Roulholamini Najafabadi A, Amini M, Montazeri H, Vatanara A (2020) Hydroxypropyl beta cyclodextrin: a water-replacement agent or a surfactant upon spray freeze-drying of IgG with enhanced stability and aerosolization. Drug Dev Ind Pharm 46(3):403–411

    Article  CAS  PubMed  Google Scholar 

  36. Pouya MA, Daneshmand B, Aghababaie S, Faghihi H, Vatanara A (2018) Spray-freeze drying: a suitable method for aerosol delivery of antibodies in the presence of trehalose and cyclodextrins. AAPS PharmSciTech 19(5):2247–2254

    Article  CAS  PubMed  Google Scholar 

  37. Poursina N, Vatanara A, Rouini MR, Gilani K, Najafabadi AR (2016) The effect of excipients on the stability and aerosol performance of salmon calcitonin dry powder inhalers prepared via the spray freeze drying process. Acta Pharm 66(2):207–218

    Article  CAS  PubMed  Google Scholar 

  38. Kanojia G, Have RT, Bakker A, Wagner K, Frijlink HW, Kersten GF, Amorij JP (2016) The production of a stable infliximab powder: the evaluation of spray and freeze-drying for production. PLoS ONE 11(10):e0163109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Costantino HR, Firouzabadian L, Hogeland K, Wu C, Beganski C, Carrasquillo KG, Cordova M, Griebenow K, Zale SE, Tracy MA (2000) Protein spray freeze drying. Effect of atomization conditions on particle size and stability. Pharm Res 17(11):1374–1383

    Article  CAS  PubMed  Google Scholar 

  40. Costantino HR, Firouzabadian L, Wu C, Carrasquillo KG, Griebenow K, Zale SE, Tracy MA (2002) Protein spray freeze drying. 2. Effect of formulation variables on particle size and stability. J Pharm Sci 91(2):388–395

    Article  CAS  PubMed  Google Scholar 

  41. Klaus W, Gsell B, Labhardt AM, Wipf B, Senn H (1997) The three-dimensional high resolution structure of human interferon a-2a determined by heteronuclear NMR spectroscopy in solution. J Mol Biol 274:661–675

    Article  CAS  PubMed  Google Scholar 

  42. Patriksson A, van der Spoel D (2008) A temperature predictor for parallel tempering simulations. Phys Chem Chem Phys 10(15):2073–2077

    Article  CAS  PubMed  Google Scholar 

  43. Estrela N, Franquelim HG, Lopes C, Tavares E, Macedo JA, Christiansen G, Otzen DE, Melo EP (2015) Sucrose prevents protein fibrillation through compaction of the tertiary structure but hardly affects the secondary structure. Proteins: Structure, Function, Bioinformatics 83(11):2039–2051

    Article  CAS  Google Scholar 

  44. Das A, Basak P, Pattanayak R, Kar T, Majumder R, Pal D, Bhattacharya A, Bhattacharyya M, Banik SP (2017) Trehalose induced structural modulation of bovine serum albumin at ambient temperature. Int J Biol Macromol 105(Pt 1):645–655

    Article  CAS  PubMed  Google Scholar 

  45. Abe M, Abe Y, Ohkuri T, Mishima T, Monji A, Kanba S, Ueda T (2013) Mechanism for retardation of amyloid fibril formation by sugars in Vlambda6 protein. Protein Sci 22(4):467–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Belluzo S, Boeris V, Farruggia B, Pico G (2011) Influence of stabilizers cosolutes on catalase conformation. Int J Biol Macromol 49(5):936–941

    Article  CAS  PubMed  Google Scholar 

  47. Pazhang M, Mehrnejad F, Pazhang Y, Falahati H, Chaparzadeh N (2016) Effect of sorbitol and glycerol on the stability of trypsin and difference between their stabilization effects in the various solvents. Biotechnol Appl Biochem 63(2):206–213

    Article  CAS  PubMed  Google Scholar 

  48. Spiga E, Abriata LA, Piazza F, Dal Peraro M (2014) Dissecting the effects of concentrated carbohydrate solutions on protein diffusion, hydration, and internal dynamics. J Phys Chem B 118(20):5310–5321

    Article  CAS  PubMed  Google Scholar 

  49. Azizi A, Ranjbar B, Khajeh K, Ghodselahi T, Hoornam S, Mobasheri H, Ganjalikhany MR (2011) Effects of trehalose and sorbitol on the activity and structure of Pseudomonas cepacia lipase: spectroscopic insight. Int J Biol Macromol 49(4):652–656

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Contract No. 61832019, 61503244), the Key Research Area Grant 2016YFA0501703 of the Ministry of Science and Technology of China, SJTU JiRLMDS Joint Research Fund, and the Science and Technology Commission of Shanghai Municipality (Grant: 19430750600). The work also was supported by Open Funding Project of State Key Laboratory of Microbial Metabolism (MMLKF21-11).

Author information

Authors and Affiliations

Authors

Contributions

Daixi Li supervised research, Peiqin Chen performed the analysis and wrote the manuscript, and Daixi Li and Baolin Liu performed the molecular dynamics simulation. Wujie Zhang and Dong-qing Wei contributed significantly to analysis and manuscript preparation, and Qingli Dong and Baisong Guo helped perform the analysis with constructive discussions.

Corresponding author

Correspondence to Daixi Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Chen, P., Dong, Q. et al. Investigating the stabilisation of IFN-α2a by replica exchange molecular dynamics simulation. J Mol Model 28, 232 (2022). https://doi.org/10.1007/s00894-022-05212-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05212-w

Keywords

Navigation