Skip to main content
Log in

Molecular dynamics simulations of structure and dynamics in aqueous solution of neutral and ionized derivatives of poly(vinyl amine): methyl, n-propyl, and iso-propyl substitutions

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

A Correction to this article was published on 06 June 2022

This article has been updated

Abstract

Chain dimensions, intermolecular structure and hydration of a series of uncharged and cationic poly(vinyl amine) [PVAm] linear polymers having hydrophobic substituent methyl, n-propyl, and isopropyl in the monomer are studied in aqueous solution by molecular dynamics simulations. A conformational transition occurs in the degree of ionization, α, range 0.3 to 0.4. Among the polymers studied, isopropyl substituted PVAm is most hydrophobic and methyl substituted PVAm is the least. The extent of hydrophobicity of the chemical structure is directly correlated to the size of the polymer chain. Conformational dynamics become slower with increase in the degree of charge of the chain and with the size of the substituent side group. The significant hydration of the polymers takes place for 0 ≤ α ≤ 0.5. While the number of H-bonds is not affected significantly by the chemical structure of the chain the relaxation dynamics of polymer-water H-bonds is significantly affected, with the more hydrophobic polymer showing the slowest dynamics. The steric hindrance provided by the hydrophobic substituent groups is responsible for slowing of water orientation dynamics in the vicinity of the polymer. The counter-ion condensation is clearly better and the bound water content is less for the relatively more hydrophobic polymer. The overall behavior of structure and dynamics is in qualitative agreement with that known for other types of polyelectrolytes and solutes in aqueous solution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data can be made available on request.

Change history

References

  1. Oosawa F (1971) Polyelectrolytes. M. Dekker, New York

  2. Doi M, Edwards SF (2007) The theory of polymer dynamics, Reprinted. Clarendon Press, Oxford

    Google Scholar 

  3. Barrat J-L, Joanny F (1996) Theory of polyelectrolyte solutions. In: Advances in Chemical Physics. John Wiley & Sons, Ltd, pp 1–66

  4. McCormick CL, Middleton JC, Cummins DF (1992) Water-soluble copolymers. 37. Synthesis and characterization of responsive hydrophobically modified polyelectrolytes. Macromolecules 25:1201–1206. https://doi.org/10.1021/ma00030a001

    Article  CAS  Google Scholar 

  5. Candau F, Selb J (1999) Hydrophobically-modified polyacrylamides prepared by micellar polymerization. Adv Colloid Interface Sci 79:149–172. https://doi.org/10.1016/S0001-8686(98)00077-3

    Article  CAS  Google Scholar 

  6. Rabiee A (2010) Acrylamide-based anionic polyelectrolytes and their applications: a survey. Vinyl AdditTechnol 16:111–119. https://doi.org/10.1002/vnl.20229

    Article  CAS  Google Scholar 

  7. Afolabi RO, Oluyemi GF, Officer S, Ugwu JO (2019) Hydrophobically associating polymers for enhanced oil recovery – Part A: a review on the effects of some key reservoir conditions. J Pet SciEng 180:681–698. https://doi.org/10.1016/j.petrol.2019.06.016

    Article  CAS  Google Scholar 

  8. Jiang F, Pu W (2020) Salt induced shear thickening behavior of a hydrophobic association polymer and its potential in enhanced oil recovery. J Mater Sci 55:3130–3138. https://doi.org/10.1007/s10853-019-04221-0

    Article  CAS  Google Scholar 

  9. Zhu R, Feng Y, Luo P (2020) Net contribution of hydrophobic association to the thickening power of hydrophobically modified polyelectrolytes prepared by micellar polymerization. Macromolecules 53:1326–1337. https://doi.org/10.1021/acs.macromol.9b01975

    Article  CAS  Google Scholar 

  10. Feng X, Pouw K, Leung V, Pelton R (2007) Adhesion of colloidal polyelectrolyte complexes to wet cellulose. Biomacromolecules 8:2161–2166. https://doi.org/10.1021/bm070307r

    Article  CAS  PubMed  Google Scholar 

  11. Lai T-W, Vijayendran BR United States Patent: 4843118 - acidized fracturing fluids containing high molecular weight poly(vinylamines) for enhanced oil recovery

  12. Arghan M, Koukabi N, Kolvari E (2019) Polyvinyl amine as a modified and grafted shell for Fe3O4 nanoparticles: as a strong solid base catalyst for the synthesis of various dihydropyrano[2,3-c]pyrazole derivatives and the Knoevenagel condensation. J Saudi ChemSoc 23:150–161. https://doi.org/10.1016/j.jscs.2018.05.008

    Article  CAS  Google Scholar 

  13. Tong Z, Ho WSW (2017) New sterically hindered polyvinylamine membranes for CO2 separation and capture. J MembrSci 543:202–211. https://doi.org/10.1016/j.memsci.2017.08.057

    Article  CAS  Google Scholar 

  14. Ahlers M, DE, Glombik H, et al United States Patent: 5430110 - polyvinylamine derivatives having hydrophilic centers, processes for their preparation and the use of the compounds as a medicament, active compound carrier and foodstuff auxiliary

  15. Jaber J, Moya W, Hamzik J, et al United States Patent: 9731288 - stimulus responsive polymers for the purification of biomolecules

  16. Pelton R (2014) Polyvinylamine: a tool for engineering interfaces. Langmuir 30:15373–15382. https://doi.org/10.1021/la5017214

    Article  CAS  PubMed  Google Scholar 

  17. Han J-H, Kim J, Acter S et al (2014) Uniform hollow-structured poly(vinyl amine) hydrogel microparticles with controlled mesh property and enhanced cell adhesion. Polymer 55:1143–1149. https://doi.org/10.1016/j.polymer.2014.01.017

    Article  CAS  Google Scholar 

  18. van Treslong CJB, Staverman AJ (1974) Poly(ethylenimine) II. Potentiometric titration behaviour in comparison with other weak polyelectrolytes. ReclTravChim Pays-Bas 93:171–178. https://doi.org/10.1002/recl.19740930612

    Article  Google Scholar 

  19. Treslong CJB van, Morra CFH (1975) Poly(vinylamine). Synthesis and characterization. ReclTravChim Pays-Bas 94:101–105. https://doi.org/10.1002/recl.19750940507

  20. van Treslong CJB (1978) Evaluation of potentiometric data of weak polyelectrolytes taking account of nearest-neighbour interaction. ReclTravChim Pays-Bas 97:13–21. https://doi.org/10.1002/recl.19780970105

    Article  Google Scholar 

  21. van den Berg JWA, van Treslong CJB, Polderman A (1973) Polyethyleneimine I: fractionation; Mark-Houwink relation. ReclTravChim Pays-Bas 92:3–10. https://doi.org/10.1002/recl.19730920102

    Article  Google Scholar 

  22. Lewis EA, Barkley J, St. Pierre T (1981) Calorimetric titration of poly(vinylamine) and poly(iminoethylene). Macromolecules 14:546–551. https://doi.org/10.1021/ma50004a017

  23. Lewis EA, Barkley TJ, Reams RR et al (1984) Thermodynamics of proton ionization from poly(vinylammonium salts). Macromolecules 17:2874–2881. https://doi.org/10.1021/ma00142a073

    Article  CAS  Google Scholar 

  24. Lewis EA, Barkley J, St. Pierre T (1981) Calorimetric titration of poly(vinylamine) and poly(iminoethylene). Macromolecules 14:546–551. https://doi.org/10.1021/ma50004a017

  25. Kozhuharov S, Radiom M, Maroni P, Borkovec M (2018) Persistence length of poly(vinyl amine): quantitative image analysis versus single molecule force response. Macromolecules 51:3632–3639. https://doi.org/10.1021/acs.macromol.8b00834

    Article  CAS  Google Scholar 

  26. Kirwan LJ, Papastavrou G, Borkovec M, Behrens SH (2004) Imaging the coil-to-globule conformational transition of a weak polyelectrolyte by tuning the polyelectrolyte charge density. Nano Lett 4:149–152. https://doi.org/10.1021/nl034912l

    Article  CAS  Google Scholar 

  27. Martel B, Leckchiri Y, Pollet A, Morcellet M (1995) Cyclodextrin-poly(vinylamine) systems—I. Synthesis, characterization and conformational properties. EurPolym J 31:1083–1088. https://doi.org/10.1016/0014-3057(95)00082-8

    Article  CAS  Google Scholar 

  28. Kobayashi S, Suh K-D, Shirokura Y, Fujioka T (1989) Viscosity behavior of poly(vinylamine) and swelling-contraction phenomenon of its gel. Polym J 21:971–976. https://doi.org/10.1295/polymj.21.971

    Article  CAS  Google Scholar 

  29. Kobayashi S, Suh KD, Shirokura Y (1989) Chelating ability of poly(vinylamine): effects of polyamine structure on chelation. Macromolecules 22:2363–2366. https://doi.org/10.1021/ma00195a062

    Article  CAS  Google Scholar 

  30. Chang C, Fish F, Muccio DD, Pierre TS (1987) Carbon-13 and nitrogen-15 NMR pH titration of poly(vinylamine): a two-stage process sensitive to polymer tacticity. Macromolecules 20:621–625. https://doi.org/10.1021/ma00169a026

    Article  CAS  Google Scholar 

  31. Rinaldi PL, Yu C, Levy GC (1981) Carbon-13 and nitrogen-15 spin-lattice relaxation studies of poly(vinylamine) and poly(iminoethylene). Macromolecules 14:551–554. https://doi.org/10.1021/ma50004a018

    Article  CAS  Google Scholar 

  32. Illergård J, Enarsson L-E, Wågberg L, Ek M (2010) Interactions of hydrophobically modified polyvinylamines: adsorption behavior at charged surfaces and the formation of polyelectrolyte multilayers with polyacrylic Acid. ACS Appl Mater Interfaces 2:425–433. https://doi.org/10.1021/am9006879

    Article  CAS  PubMed  Google Scholar 

  33. Chen X, Wang Y, Pelton R (2005) pH-dependence of the properties of hydrophobically modified polyvinylamine. Langmuir 21:11673–11677. https://doi.org/10.1021/la0518039

    Article  CAS  PubMed  Google Scholar 

  34. Okatova OV, Gavrilova II, Ul’yanova NN et al (2012) Hydrodynamic, molecular, and conformational characteristics of macromolecules of a random copolymer of N-methyl-N-vinylacetamide and N-methyl-N-vinylamine hydrochloride. Russ J ApplChem 85:1239–1246. https://doi.org/10.1134/S1070427212080174

    Article  CAS  Google Scholar 

  35. Dommes OA, Okatova OV, Kostina AA et al (2017) Dimensions and conformations of macromolecules of N-methyl-N-vinylacetamide and N-methyl-N-vinylamine hydrochloride in solutions in a wide interval of ionic strength. PolymSciSer C 59:125–132. https://doi.org/10.1134/S1811238217010039

    Article  CAS  Google Scholar 

  36. Pavlov GM, Dommes OA, Okatova OV et al (2018) Spectrum of hydrodynamic volumes and sizes of macromolecules of linear polyelectrolytes versus their charge density in salt-free aqueous solutions. Phys ChemChem Phys 20:9975–9983. https://doi.org/10.1039/C8CP01329B

    Article  CAS  Google Scholar 

  37. Pavlov GM, Dommes OA, Okatova OV et al (2019) Electrostatic long-range interactions in macromolecules of flexible-chain linear polyelectrolytes with low charge density in aqueous solutions of different ionic strength. Dokl Phys Chem 489:164–167. https://doi.org/10.1134/S0012501619110022

    Article  CAS  Google Scholar 

  38. Pachpinde S, Natarajan U (2021) Conformations, inter-molecular structure and hydrogen bond dynamics of neutral and cationic poly(vinyl amine) in aqueous solution. Molecular Simulation 47:1299–1312. https://doi.org/10.1080/08927022.2021.1968389

    Article  CAS  Google Scholar 

  39. Kondinskaia DA, KostritskiiAYu NAM et al (2016) Atomic-scale molecular dynamics simulations of DNA–polycation complexes: two distinct binding Patterns. J Phys Chem B 120:6546–6554. https://doi.org/10.1021/acs.jpcb.6b03779

    Article  CAS  PubMed  Google Scholar 

  40. Yu KA, Kondinskaia DA, Nesterenko AM, Gurtovenko AA (2016) Adsorption of synthetic cationic polymers on model phospholipid membranes: insight from atomic-scale molecular dynamics simulations. Langmuir 32:10402–10414. https://doi.org/10.1021/acs.langmuir.6b02593

    Article  CAS  Google Scholar 

  41. Stevens MJ, Kremer K (1995) The nature of flexible linear polyelectrolytes in salt free solution: a molecular dynamics study. J Chem Phys 103:1669–1690. https://doi.org/10.1063/1.470698

    Article  CAS  Google Scholar 

  42. Yethiraj A (1998) Theory for chain conformations and static structure of dilute and semidilute polyelectrolyte solutions. J Chem Phys 108:1184–1192. https://doi.org/10.1063/1.475480

    Article  CAS  Google Scholar 

  43. Wang Q, Taniguchi T, Fredrickson GH (2004) Self-consistent field theory of polyelectrolyte systems. J Phys Chem B 108:6733–6744. https://doi.org/10.1021/jp037053y

    Article  CAS  Google Scholar 

  44. Muthukumar M (2004) Theory of counter-ion condensation on flexible polyelectrolytes: adsorption mechanism. J Chem Phys 120:9343–9350. https://doi.org/10.1063/1.1701839

    Article  CAS  PubMed  Google Scholar 

  45. Dobrynin A, Rubinstein M (2005) Theory of polyelectrolytes in solutions and at surfaces. ProgPolymSci 30:1049–1118. https://doi.org/10.1016/j.progpolymsci.2005.07.006

    Article  CAS  Google Scholar 

  46. Prabhu VM (2005) Counterion structure and dynamics in polyelectrolyte solutions. CurrOpin Colloid Interface Sci 10:2–8. https://doi.org/10.1016/j.cocis.2005.04.002

    Article  CAS  Google Scholar 

  47. Lo TS, Khusid B, Koplik J (2008) Dynamical clustering of counterions on flexible polyelectrolytes. Phys Rev Lett 100:128301. https://doi.org/10.1103/Phys

    Article  PubMed  Google Scholar 

  48. Loh P, Deen GR, Vollmer D et al (2008) Collapse of linear polyelectrolyte chains in a poor solvent: when does a collapsing polyelectrolyte collect its counterions? Macromolecules 41:9352–9358. https://doi.org/10.1021/ma8014239

    Article  CAS  Google Scholar 

  49. Dobrynin AV (2008) Theory and simulations of charged polymers: from solution properties to polymeric nanomaterials. CurrOpin Colloid Interface Sci 13:376–388. https://doi.org/10.1016/j.cocis.2008.03.006

    Article  CAS  Google Scholar 

  50. Hsiao P-Y, Luijten E (2006) Salt-induced collapse and reexpansion of highly charged flexible polyelectrolytes. Phys Rev Lett 97:148301. https://doi.org/10.1103/PhysRevLett.97.148301

    Article  CAS  PubMed  Google Scholar 

  51. Accelrys Software Inc (2007) Materials, Release 5.0, San Diego

  52. Suter UW (1981) Epimerization of vinyl polymers to stereochemical equilibrium. 1. Theory Macromolecules 14:523–528. https://doi.org/10.1021/ma50004a012

    Article  CAS  Google Scholar 

  53. Van der Maarel JRC, Lankhorst D, De Bleijser J, Leyte JC (1987) Water dynamics in polyelectrolyte solutions from deuterium and oxygen-17 nuclear magnetic relaxation. Macromolecules 20:2390–2397. https://doi.org/10.1021/ma00176a011

    Article  Google Scholar 

  54. Oostenbrink C, Villa A, Mark AE, Gunsteren WFV (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J ComputChem 25:1656–1676. https://doi.org/10.1002/jcc.20090

    Article  CAS  Google Scholar 

  55. Pechlaner M, Reif MM, Oostenbrink C (2017) Reparametrisation of united-atom amine solvation in the GROMOS force field. Mol Phys 115:1144–1154. https://doi.org/10.1080/00268976.2016.1255797

    Article  CAS  Google Scholar 

  56. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces: proceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry Held in Jerusalem, Israel, April 13–16, 1981. Springer, Netherlands, pp 331–342

    Chapter  Google Scholar 

  57. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  58. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101. https://doi.org/10.1063/1.2408420

    Article  CAS  PubMed  Google Scholar 

  59. Braun E, Moosavi SM, Smit B (2018) Anomalous effects of velocity rescaling algorithms: the flying ice cube effect revisited. J Chem Theory Comput 14:5262–5272. https://doi.org/10.1021/acs.jctc.8b00446

    Article  CAS  PubMed  Google Scholar 

  60. Basconi JE, Shirts MR (2013) Effects of temperature control algorithms on transport properties and kinetics in molecular dynamics simulations. J Chem Theory Comput 9:2887–2899. https://doi.org/10.1021/ct400109a

    Article  CAS  PubMed  Google Scholar 

  61. Berendsen HJC, Postma JPM, van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  62. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J ComputChem 18:1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

    Article  CAS  Google Scholar 

  63. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N ) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  64. Essmann U, Perera L, Berkowitz ML et al (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593. https://doi.org/10.1063/1.470117

    Article  CAS  Google Scholar 

  65. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447. https://doi.org/10.1021/ct700301q

    Article  CAS  PubMed  Google Scholar 

  66. Luzar A, Chandler D (1996) Hydrogen-bond kinetics in liquid water. Nature 379:55–57. https://doi.org/10.1038/379055a0

    Article  CAS  Google Scholar 

  67. van der Spoel D, Berendsen HJ (1997) Molecular dynamics simulations of Leu-enkephalin in water and DMSO. Biophys J 72:2032–2041. https://doi.org/10.1016/S0006-3495(97)78847-7

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kusalik PG, Svishchev IM (1994) The spatial structure in liquid water. Science 265:1219–1221. https://doi.org/10.1126/science.265.5176.1219

    Article  CAS  PubMed  Google Scholar 

  69. Kusalik PG, Bergman D, Laaksonen A (2000) The local structure in liquid methylamine and methylamine–water mixtures. J Chem Phys 113:8036–8046. https://doi.org/10.1063/1.1315321

    Article  CAS  Google Scholar 

  70. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38, 27–28. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  71. Sulatha MS, Natarajan U (2011) Origin of the difference in structural behavior of poly(acrylic acid) and poly(methacrylic acid) in aqueous solution discerned by explicit-solvent explicit-ion MD simulations. IndEngChem Res 50:11785–11796. https://doi.org/10.1021/ie2014845

    Article  CAS  Google Scholar 

  72. Sulatha MS, Natarajan U (2012) Molecular dynamics simulations of PAA–PMA polyelectrolyte copolymers in dilute aqueous solution: chain conformations and hydration properties. IndEngChem Res 51:10833–10839. https://doi.org/10.1021/ie301244n

    Article  CAS  Google Scholar 

  73. Sappidi P, Muralidharan SS, Natarajan U (2014) Conformations and hydration structure of hydrophobic polyelectrolyte atacticpoly(ethacrylic acid) in dilute aqueous solution as a function of neutralization. Mol Simul 40:295–305. https://doi.org/10.1080/08927022.2013.803551

    Article  CAS  Google Scholar 

  74. Mintis DG, Mavrantzas VG (2019) Effect of pH and molecular length on the structure and dynamics of short poly(acrylic acid) in dilute solution: detailed molecular dynamics study. J Phys Chem B 123:4204–4219. https://doi.org/10.1021/acs.jpcb.9b01696

    Article  CAS  PubMed  Google Scholar 

  75. Yao G, Zhao J, Ramisetti SB, Wen D (2018) Atomistic molecular dynamic simulation of dilute poly(acrylic acid) solution: effects of simulation size sensitivity and ionic strength. IndEngChem Res 57:17129–17141. https://doi.org/10.1021/acs.iecr.8b03549

    Article  CAS  Google Scholar 

  76. Katiyar RS, Jha PK (2017) Phase behavior of aqueous polyacrylic acid solutions using atomistic molecular dynamics simulations of model oligomers. Polymer 114:266–276. https://doi.org/10.1016/j.polymer.2017.03.007

    Article  CAS  Google Scholar 

  77. van der Post ST, Scheidelaar S, Bakker HJ (2012) Femtosecond study of the effects of ions on the reorientation dynamics of water. J MolLiq 176:22–28. https://doi.org/10.1016/j.molliq.2012.05.014

    Article  CAS  Google Scholar 

  78. Bakulin AA, Pshenichnikov MS, Bakker HJ, Petersen C (2011) Hydrophobic molecules slow down the hydrogen-bond dynamics of water. J Phys Chem. A 115:1821–1829. https://doi.org/10.1021/jp107881j

    Article  CAS  PubMed  Google Scholar 

  79. van der Post ST, Scheidelaar S, Bakker HJ (2013) Water dynamics in aqueous solutions of tetra-n-alkylammonium salts: hydrophobic and Coulomb interactions disentangled. J Phys Chem B 117:15101–15110. https://doi.org/10.1021/jp4085734

    Article  CAS  PubMed  Google Scholar 

  80. Laage D, Stirnemann G, Hynes JT (2009) Why water reorientation slows without iceberg formation around hydrophobic solutes. J Phys Chem B 113:2428–2435. https://doi.org/10.1021/jp809521t

    Article  CAS  PubMed  Google Scholar 

  81. Manning GS, Ray J (1998) Counterion condensation revisited. J BiomolStructDyn 16:461–476. https://doi.org/10.1080/07391102.1998.10508261

    Article  CAS  Google Scholar 

  82. van der Vegt NFA, Haldrup K, Roke S et al (2016) Water-mediated ion pairing: occurrence and relevance. Chem 116:7626–7641. https://doi.org/10.1021/acs.chemrev.5b00742

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the availability of VIRGO supercomputing cluster at the HPCE at Indian Institute of Technology Madras, on which the MD production simulations were performed. Most of the NVT equilibration steps and various structural and energetic analysis were carried out on Linux workstations in the Macromolecular Modeling and Simulation laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upendra Natarajan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to a mistake in the article title.

Supplementary information

Supporting information includes the tables for following: tacticity sequence used in the study, ionization protocol used to simulate indirect effect of pH, number of hydrogen bonds between monomer and water, number of intra-chain hydrogen bonds formed within the segments of the polymer chain, relaxation of polymer-water hydrogen bonds, relaxation of intra-chain hydrogen bonds within the polymer chain. Figures for system snapshots showcasing initial system setup, radial distribution function plots for monomer–water pair, radial distribution function plots for monomer-Cl pair, radial distribution function plots for N+-OW atom pair, radial distribution function plots for N+-Cl atom pair, snapshot depicting counter-ion condensation on polymer chain.

ESM 1

(DOCX 2936 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pachpinde, S., HamsaPriya, M. & Natarajan, U. Molecular dynamics simulations of structure and dynamics in aqueous solution of neutral and ionized derivatives of poly(vinyl amine): methyl, n-propyl, and iso-propyl substitutions. J Mol Model 28, 151 (2022). https://doi.org/10.1007/s00894-022-05139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05139-2

Keywords

Navigation