Skip to main content
Log in

Probing the Structural, Electronic and Adsorptive Properties of \({{\text{V}}_{\text{n}}}{{{\text{O}}}^{-}}\boldsymbol{ }\text{(n}\) = 10–15) Clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This work presents a systematic density functional theory (DFT) study of the structural, electronic and adsorptive properties of \({{\text{V}}_{\text{n}}}{{{\text{O}}}^{-}} \text{(n}\) = 10–15) clusters. The lowest energy structures and low–lying isomers are obtained. Calculated adiabatic detachment energy (ADE), vertical detachment energy (VDE) and simulated photoelectron spectra (PES) of the lowest energy structures fit well with experiments. The ground–state \({{\text{V}}_{\text{n}}}{{{\text{O}}}^{-}} \text{(n}\) = 10–15) clusters with even n are more stable than those with odd n. Especially, \({\text{V}}_{12}{{\text{O}}}^{-}\) cluster is more stable among all clusters of different sizes. Furthermore, the natural population analysis shows that charges transfer from the parent \({\text{V}}_{\text{n}}^{-}\) to O atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. B. Geoffrey (1989). J. Catal. 116, 531.

    Article  Google Scholar 

  2. A. Arne and T. L. Sten (1979). J. Catal. 58, 383.

    Article  Google Scholar 

  3. I. Makoto, M. Akira, U. Toshiaki, K. Kan, and M. Yuichi (1982). Ind. Eng. Chem. Prod. Res. Dev. 21, 424.

    Article  Google Scholar 

  4. N. Y. Topsoe, H. Topsoe, and J. A. Dumesic (1995). J. Catal. 151, 226.

    Article  CAS  Google Scholar 

  5. G. Deo and I. E. Wachs (1994). J. Catal. 146, 323.

    Article  CAS  Google Scholar 

  6. U. Andrzej and T. Marek (1980). Catal. Rev.: Sci. Eng. 21, 73.

    Article  Google Scholar 

  7. I. Kosacki, M. Massot, M. Balkanski, and H. L. Tuller (1992). Mater. Sci. Eng. 12, 345.

    Article  Google Scholar 

  8. J. Xu, M. T. Rodgers, J. B. Griffin, and P. B. Armentrout (1998). J. Chem. Phys. 108, 9339.

    Article  CAS  Google Scholar 

  9. R. C. Bell, K. A. Zemski, K. P. Kerns, H. T. Deng, and A. W. Castleman (1998). J. Phys. Chem. A 102, 1733.

    Article  CAS  Google Scholar 

  10. R. C. Bell, K. A. Zemski, D. R. Justes, and A. W. Castleman (2001). J. Chem. Phys. 114, 798.

    Article  CAS  Google Scholar 

  11. G. L. Gutsev, B. K. Rao, and P. Jena (2000). J. Phys. Chem. A 104, 5374.

    Article  CAS  Google Scholar 

  12. H. J. Zhai and L. S. Wang (2002). J. Chem. Phys. 117, 7882.

    Article  CAS  Google Scholar 

  13. M. Foltin, G. J. Stueber, and E. R. Bernstein (1999). J. Chem. Phys. 111, 9577.

    Article  CAS  Google Scholar 

  14. R. C. Bell, K. A. Zemski, and A. W. Castleman (1999). J. Clust. Sci. 10, 509.

    Article  CAS  Google Scholar 

  15. Z. R. Xiao and G. Y. Guo (2009). J. Chem. Phys. 130, 214704.

    Article  CAS  PubMed  Google Scholar 

  16. K. R. Asmis, G. Meijer, M. Brümmer, C. Kaposta, G. Santambrogio, L. Wöste, and J. Sauer (2004). J. Chem. Phys. 120, 6461.

    Article  CAS  PubMed  Google Scholar 

  17. H. Y. Zhang, C. Cui, M. Yan, L. J. Geng, H. M. Wu, Y. H. Jia, Z. X. Luo, and S. D. Li (2021). Phys. Chem. Chem. Phys. 23, 921.

    Article  CAS  PubMed  Google Scholar 

  18. H. Y. Zhang, H. M. Wu, L. J. Geng, Y. H. Jia, M. Z. Yang, and Z. X. Luo (2019). Phys. Chem. Chem. Phys. 21, 11234.

    Article  CAS  PubMed  Google Scholar 

  19. H. B. Wu and L. S. Wang (1998). J. Chem. Phys. 108, 5310.

    Article  CAS  Google Scholar 

  20. J. E. Mann, D. W. Rothgeb, S. E. Waller, and C. C. Jarrold (2010). J. Phys. Chem. A 114, 11312.

    Article  CAS  PubMed  Google Scholar 

  21. S. F. Vyboishchikov and J. Sauer (2001). J. Phys. Chem. A 105, 8588.

    Article  CAS  Google Scholar 

  22. K. Sagapariya, K. N. Rathod, K. Gadani, H. Boricha, V. G. Shrimali, B. Rajyaguru, A. Donga, A. D. Joshi, D. D. Pandya, N. A. Shah, and P. S. Solanki (2017). AIP Conf. Proc. 1837, 030006.

    Article  Google Scholar 

  23. H. Q. Wang and H. F. Li (2012). J. Chem. Phys. 137, 164304.

    Article  PubMed  Google Scholar 

  24. H. Q. Wang, H. F. Li, and X. Y. Kuang (2012). Phys. Chem. Chem. Phys. 14, 5272.

    Article  CAS  PubMed  Google Scholar 

  25. A. Pramann, K. Koyasu, A. Nakajima, and K. Kaya (2002). J. Chem. Phys. 116, 6521.

    Article  CAS  Google Scholar 

  26. S. Martin (2004). J. Comput. Chem. 25, 621.

    Article  Google Scholar 

  27. P. P. Bera, K. W. Sattelmeyer, M. Saunders, H. F. Schaefer, and P. V. R. Schleyer (2006). J. Phys. Chem. A 110, 4287.

    Article  CAS  PubMed  Google Scholar 

  28. D. Roy, C. Corminboeuf, C. S. Wannere, R. B. King, and P. V. R. Schleyer (2006). Inorg. Chem. 45, 8902.

    Article  CAS  PubMed  Google Scholar 

  29. Q. Zhan, X. L. Tian, H. F. Li, H. C. Zhang, Y. Zhu, K. Feng, Y. W. Fan, and H. Q. Wang (2020). J. Mol. Model. 26, 337.

    Article  CAS  PubMed  Google Scholar 

  30. Y. W. Fan, H. Q. Wang, and H. F. Li (2020). Phys. Chem. Chem. Phys. 22, 20545.

    Article  CAS  PubMed  Google Scholar 

  31. H. Q. Wang, H. F. Li, and L. X. Zheng (2013). J. Magn. Magn. Mater. 344, 79.

    Article  Google Scholar 

  32. Y. W. Fan, H. Q. Wang, and H. F. Li (2021). Spectrochim. Acta Part A 245, 118935.

    Article  CAS  Google Scholar 

  33. H. Q. Wang and H. F. Li (2014). RSC Adv. 4, 29782.

    Article  CAS  Google Scholar 

  34. H. F. Li and H. Q. Wang (2014). Phys. Chem. Chem. Phys. 16, 244.

    Article  CAS  PubMed  Google Scholar 

  35. Y. W. Fan, X. Y. Kong, L. J. Zhao, H. Q. Wang, H. F. Li, Q. Zhan, B. Xie, H. G. Xu, and W. J. Zheng (2021). J. Chem. Phys. 154, 204302.

    Article  CAS  PubMed  Google Scholar 

  36. A. D. Becke (1988). Phys. Rev. A 38, 3098.

    Article  CAS  Google Scholar 

  37. J. P. Perdew and Y. Wang (1992). Phys. Rev. B 45, 13244.

    Article  CAS  Google Scholar 

  38. W. J. Hehre (1969). J. Chem. Phys. 51, 2657.

    Article  CAS  Google Scholar 

  39. J. P. William and J. H. Warren (1983). J. Comput. Chem. 4, 241.

    Article  Google Scholar 

  40. A. W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp, and G. Frenking (1993). Chem. Phys. Lett. 208, 111.

    Article  CAS  Google Scholar 

  41. P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 299.

    Article  CAS  Google Scholar 

  42. L. E. Roy, P. J. Hay, and R. L. Martin (2008). J. Chem. Theory Comput. 4, 1029.

    Article  CAS  PubMed  Google Scholar 

  43. T. Clark, J. Chandrasekhar, G. W. Spitznagel, and P. V. R. Schleyer (1983). J. Comput. Chem. 4, 294.

    Article  CAS  Google Scholar 

  44. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople (1980). J. Chem. Phys. 72, 650.

    Article  CAS  Google Scholar 

  45. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al (2010). Gaussian 09, Revision C.01. Gaussian Inc, Wallingford CT.

  46. G. L. Gutsev and C. W. Bauschlicher (2003). J. Phys. Chem. A 107, 4755.

    Article  CAS  Google Scholar 

  47. L. G. Gennady, A. Lester, and W. B. J. Charles (2003). Theor. Chem. Acc. 109, 298.

    Article  Google Scholar 

  48. X. Y. Wu and A. K. Ray (1999). J. Chem. Phys. 110, 2437.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project supported by the Science and Technology Plan of Quanzhou (Grant Nos. 2018C77R and 2018C078R), the Natural Science Foundation of Fujian Province of China (Grant No. 2017 J01001), the New Century Excellent Talents in Fujian Province University (Grant No. 2014FJ–NCET–ZR07), the Program for Excellent Youth in Fujian Province University (Grant No. JA13009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-Fang Li or Huai-Qian Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1878 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Q., Li, HF., Xie, B. et al. Probing the Structural, Electronic and Adsorptive Properties of \({{\text{V}}_{\text{n}}}{{{\text{O}}}^{-}}\boldsymbol{ }\text{(n}\) = 10–15) Clusters. J Clust Sci 34, 1651–1658 (2023). https://doi.org/10.1007/s10876-022-02267-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02267-w

Keywords

Navigation