Skip to main content
Log in

A molecular modeling on the boron trichloride gas detection by S- and Cr-doped graphyne

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Here, we scrutinize the adsorption of boron trichloride (BCl3) on pure, S-doped, and Cr-doped graphyne by means of density functional theory (DFT) calculations. BCl3 interacts weakly with pure graphyne, so it cannot be employed as a sensor. Despite the strengthening of interaction through S-doping, we cannot still employ the S-doped sheet as a sensor. Nevertheless, there is a considerable increase in the sensitivity and reactivity of the sheet through substituting the transition metal Cr for the C. There is a reduction in the HOMO–LUMO gap of Cr-doped graphyne from 2.18 to 1.38 eV when BCl3 is adsorbed, thereby increasing the electrical conductivity to a great extent. Hence, it is possible to convert the considerable change in conductivity into an electronic signal, which demonstrates the encouraging nature of Cr-doped graphyne as a sensor to detect BCl3. Additionally, the adsorption process reduces the work function of graphyne to a great extent, which demonstrates that we can also employ it as a work function-type sensor for detecting BCl3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

All data will be available if required.

Code availability

Not applicable.

References

  1. Kumar R, Khandelwal N (2021) Chapter 3 - Boron trichloride: risk assessment, environmental, and health hazard. In: Singh J, Kaushik RD, Chawla M (eds) Hazardous Gases. Academic Press, pp 23–31. https://doi.org/10.1016/B978-0-323-89857-7.00023-2

  2. Zhang Y, Li C, Jia D, Zhang D, Zhang X (2015) Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding. Int J Mach Tools Manuf 99:19–33

  3. Walia GK, Randhawa DKK (2018) Adsorption and dissociation of sulfur-based toxic gas molecules on silicene nanoribbons: a quest for high-performance gas sensors and catalysts. J Mol Model 24:1–8

    Article  Google Scholar 

  4. Zhang Y, Li C, Ji H, Yang X, Yang M, Jia D, Zhang X, Li R, Wang J (2017) Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms. Int J Mach Tools Manuf 122:81–97

  5. Ji B, Zhang F, Song X, Tang Y (2017) A novel potassium-ion-based dual-ion battery. Adv Mater (Weinheim) 29(19):1700519. https://doi.org/10.1002/adma.201700519

    Article  CAS  Google Scholar 

  6. Zhao N, Deng L, Luo D, Zhang P (2020) One-step fabrication of biomass-derived hierarchically porous carbon/MnO nanosheets composites for symmetric hybrid supercapacitor. Appl Surf Sci 526:146696. https://doi.org/10.1016/j.apsusc.2020.146696

    Article  CAS  Google Scholar 

  7. Chen R, Cheng Y, Wang P, Wang Q, Wan S, Huang S, Wang Y (2021) Enhanced removal of Co(II) and Ni(II) from high-salinity aqueous solution using reductive self-assembly of three-dimensional magnetic fungal hyphal/graphene oxide nanofibers. Sci Total Environ 756:143871. https://doi.org/10.1016/j.scitotenv.2020.143871

    Article  CAS  PubMed  Google Scholar 

  8. Chen R, Cheng Y, Wang P, Wang Y, Wang Q, Yang Z, Su C (2021) Facile synthesis of a sandwiched Ti3C2Tx MXene/nZVI/fungal hypha nanofiber hybrid membrane for enhanced removal of Be(II) from Be(NH2)2 complexing solutions. Chem Eng J 421:129682. https://doi.org/10.1016/j.cej.2021.129682

    Article  CAS  Google Scholar 

  9. Li X, Sheng X, Guo Y, Lu X, Wu H, Chen Y, Gu J (2021) Multifunctional HDPE/CNTs/PW composite phase change materials with excellent thermal and electrical conductivities. J Mater Sci Technol 86:171–179. https://doi.org/10.1016/j.jmst.2021.02.009

    Article  Google Scholar 

  10. Yu Y, Zhao Y, Qiao Y, Feng Y, Li W, Fei W (2021) Defect engineering of rutile TiO2 ceramics: route to high voltage stability of colossal permittivity. J Mater Sci Technol 84:10–15. https://doi.org/10.1016/j.jmst.2020.12.046

    Article  Google Scholar 

  11. Yang M, Li C, Zhang Y, Jia D, Zhang X, Hou Y, Li R, Wang J (2017) Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. Int J Mach Tools Manuf 122:55–65

  12. Sütay B, Yurtsever M (2017) Adsorption of dihalogen molecules on pristine graphene surface: Monte Carlo and molecular dynamics simulation studies. J Mol Model 23:150–155

    Article  PubMed  Google Scholar 

  13. Yin Q, Li C, Dong L, Bai X, Zhang Y, Yang M, Jia D, Li R, Liu Z (2021) Effects of ‎physicochemical properties of different base oils on friction coefficient and surface roughness ‎in MQL milling AISI 1045. Int J Precis Eng Manuf - Green Technol 8:1629–1647

  14. Xue C, You J, Zhang H, Xiong S, Yin T, Huang Q (2021) Capacity of myofibrillar protein to adsorb characteristic fishy-odor compounds: effects of concentration, temperature, ionic strength, pH and yeast glucan addition. Food Chem 363:130304–130309. https://doi.org/10.1016/j.foodchem.2021.130304

    Article  CAS  PubMed  Google Scholar 

  15. Hu K, Wang F, Shen Z, Liu H, Xiong J (2021) Ternary heterojunctions synthesis and sensing mechanism of Pd/ZnO–SnO2 hollow nanofibers with enhanced H2 gas sensing properties. J Alloy Compd 850:156663. https://doi.org/10.1016/j.jallcom.2020.156663

    Article  CAS  Google Scholar 

  16. Zhu H, An Y, Shi M, Li Z, Chen N, Yang C, Xiao P (2021) Porous N-doped carbon/MnO2 nanoneedles for high performance ionic liquid-based supercapacitors. Mater Lett 296:129837. https://doi.org/10.1016/j.matlet.2021.129837

    Article  CAS  Google Scholar 

  17. Ji B, Yao W, Zheng Y, Kidkhunthod P, Zhou X, Tunmee S, Tang Y (2020) A fluoroxalate cathode material for potassium-ion batteries with ultra-long cyclability. Nat Commun 11(1):1225. https://doi.org/10.1038/s41467-020-15044-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang X, Tang Y, Zhang F, Lee C (2016) A novel aluminum-graphite dual-ion battery. Adv Energy Mater 6(11):1502588. https://doi.org/10.1002/aenm.201502588

    Article  CAS  Google Scholar 

  19. Naso E, Calo LA (2021) Primary membranous nephropathy and its treatment: past, present and future. Acta Med Mediterr 37:21–26. https://doi.org/10.19193/0393-6384_2021_1_1

    Article  Google Scholar 

  20. Gelzo M, Caputo M, Comegna M, Cernera G, Di Minno A, Scialo F, Castaldo G, Corso G (2021) Exploiting sterol profile analysis: over ten years of experience. A narrative review. Acta Med Mediterr 37:35–42. https://doi.org/10.19193/0393-6384_2021_1_3

    Article  Google Scholar 

  21. Geyik G, Sahin A, Pekcioglu Y, Okuroglu N, Doganay L, Ozdil K (2021) Is Nrs-2002 a reliable tool in the nutritional assessment of cirrhosis: a comparative study. Acta Med Mediterr 37:43–50. https://doi.org/10.19193/0393-6384_2021_1_4

    Article  Google Scholar 

  22. Yuan S-M (2021) Cardiovascular hiccups: a meta-analysis of comprehensively retrieved worldwide literature. Acta Med Mediterr 37:51–57. https://doi.org/10.19193/0393-6384_2021_1_5

    Article  Google Scholar 

  23. Moon YE, Kim JY, Lee SY, Kim J, Joo MA, Park HJ (2021) Herpes Zoster Myelitis, With occurrence of unusual neurologic symptoms in herpes zoster infection: successful treatment of three cases. Acta Med Mediterr 37:69–71. https://doi.org/10.19193/0393-6384_2021_1_8

    Article  Google Scholar 

  24. Ahmadi A, Kamfiroozi M, Beheshtian J, Hadipour NL (2011) The effect of surface curvature of aluminum nitride nanotubes on the adsorption of NH3. Struct Chem 22:1261–1265

    Article  CAS  Google Scholar 

  25. Baei MT, Peyghan AA, Bagheri Z (2012) A computational study of AlN nanotube as an oxygen detector. Chin Chem Lett 23:965–968

    Article  CAS  Google Scholar 

  26. Baei MT, Peyghan AA, Bagheri Z (2013) Carbon nanocone as an ammonia sensor: DFT studies. Struct Chem 24:1099–1103. https://doi.org/10.1007/s11224-012-0139-3

    Article  CAS  Google Scholar 

  27. Beheshtian J, Peyghan AA, Bagheri Z, Tabar MB (2013) Density-functional calculations of HCN adsorption on the pristine and Si-doped graphynes. Struct Chem 25:1–7

    Article  Google Scholar 

  28. Moradi M, Peyghan AA, Bagheri Z, Kamfiroozi M (2012) Cation-π interaction of alkali metal ions with C24 fullerene: a DFT study. J Mol Model 18:3535–3540. https://doi.org/10.1007/s00894-012-1366-7

    Article  CAS  PubMed  Google Scholar 

  29. Peyghan AA, Rastegar SF, Hadipour NL (2014) DFT study of NH3 adsorption on pristine, Ni-and Si-doped graphynes. Phys Lett A 378:2184–2190

    Article  CAS  Google Scholar 

  30. Zhang K, Qiu L, Tao J, Zhong X, Lin Z, Wang R, Liu Z (2021) Recovery of gallium from leach solutions of zinc refinery residues by stepwise solvent extraction with N235 and Cyanex 272. Hydrometallurgy 205:105722. https://doi.org/10.1016/j.hydromet.2021.105722

    Article  CAS  Google Scholar 

  31. Fan Z, Ji P, Zhang J, Segets D, Chen D, Chen S (2021) Wavelet neural network modeling for the retention efficiency of sub-15 nm nanoparticles in ultrafiltration under small particle to pore diameter ratio. J Membr Sci 635:119503. https://doi.org/10.1016/j.memsci.2021.119503

    Article  CAS  Google Scholar 

  32. Wang R, Xie H, Lai X, Liu J, Li J, Qiu G (2021) Visible light-enabled iron-catalyzed selenocyclization of N-methoxy-2-alkynylbenzamide. Mol Catal. https://doi.org/10.1016/j.mcat.2021.111881

    Article  Google Scholar 

  33. Zhu B, Cheng B, Zhang L, Yu J (2019) Review on DFT calculation of s-triazine-based carbon nitride. Carbon Energy 1:32–56. https://doi.org/10.1002/cey2.157

    Article  CAS  Google Scholar 

  34. Huang Q, Mao M, An L, Li Y, Zhang X, Fu L, Lang T, Wang Z, Nie Y, Wang X (2021) Detection of chromosomal abnormalities in patients with multiple myeloma by Fish and their correlation with clinical significance and prognostic value. Acta Med Mediterr 37:81–86. https://doi.org/10.19193/0393-6384_2021_1_10

    Article  Google Scholar 

  35. Cheng Z, Luo C, Guo Z (2021) Changes and relationship of plasma Hcy levels and coagulation and fibrinolysis indexes in patients with acute cerebral infarction of different severity and etiology. Acta Med Mediterr 37:87–91. https://doi.org/10.19193/0393-6384_2021_1_11

    Article  CAS  Google Scholar 

  36. Cen F, Zhu T, Lin Z (2021) The value of Ngal, Cys-C, and Strem-1 in the diagnosis and prediction of acute renal injury in sepsis. Acta Med Mediterr 37:99–103. https://doi.org/10.19193/0393-6384_2021_1_13

    Article  Google Scholar 

  37. Sun Y, Chen C, Xiong Y, Tan C, Liu Y, Li R (2021) Changes in and significance of serum levels of Ngal, Ngalr, Mmp-9 and Che in patients with ulcerative colitis. Acta Med Mediterr 37:105–109. https://doi.org/10.19193/0393-6384_2021_1_14

    Article  Google Scholar 

  38. Liu H, Chen F (2021) The value of alpha fetoprotein combined with abnormal prothrombin in the diagnosis of primary liver cancer. Acta Med Mediterr 37:111–114. https://doi.org/10.19193/0393-6384_2021_1_15

    Article  CAS  Google Scholar 

  39. Noei M, Salari AA, Ahmadaghaei N, Bagheri Z, Peyghan AA (2013) DFT study of the dissociative adsorption of HF on an AlN nanotube. C R Chim 16:985–989. https://doi.org/10.1016/j.crci.2013.05.007

    Article  CAS  Google Scholar 

  40. Peyghan AA, Baei MT, Moghimi M, Hashemian S (2012) Phenol adsorption study on pristine, Ga-, and In-doped (4, 4) armchair single-walled boron nitride nanotubes. Comput Theor Chem 997:63–69

    Article  CAS  Google Scholar 

  41. Peyghan AA, Noei M (2014) The alkali and alkaline earth metal doped ZnO nanotubes: DFT studies. Physica B 432:105–110

    Article  CAS  Google Scholar 

  42. Peyghan AA, Soleymanabadi H (2015) Computational study on ammonia adsorption on the X12Y12 nano-clusters (X= B, Al and Y= N, P). Curr Sci 108:1910–1914

    CAS  Google Scholar 

  43. Robati D, Bagheriyan S, Rajabi M, Moradi O, Peyghan AA (2016) Effect of electrostatic interaction on the methylene blue and methyl orange adsorption by the pristine and functionalized carbon nanotubes. Physica E 83:1–6

    Article  CAS  Google Scholar 

  44. Baughman R, Eckhardt H, Kertesz M (1987) Structure-property predictions for new planar forms of carbon: layered phases containing sp 2 and sp atoms. J Chem Phys 87:6687–6699

    Article  CAS  Google Scholar 

  45. Koao LF, Hone FG, Dejene FB (2020) Synthesis and characterization of PbS nanowires doped with Tb 3+ ions by using chemical bath deposition method. J Nanostruct Chem 10:1–7. https://doi.org/10.1007/s40097-019-00323-y

    Article  CAS  Google Scholar 

  46. Aragaw BA (2020) Reduced graphene oxide-intercalated graphene oxide nano-hybrid for enhanced photoelectrochemical water reduction. J Nanostruct Chem 10:9–18. https://doi.org/10.1007/s40097-019-00324-x

    Article  CAS  Google Scholar 

  47. Malinga NN, Jarvis ALL (2020) Synthesis, characterization and magnetic properties of Ni, Co and FeCo nanoparticles on reduced graphene oxide for removal of Cr (VI). J Nanostruct Chem 10:55–68. https://doi.org/10.1007/s40097-019-00328-7

    Article  CAS  Google Scholar 

  48. Rezaei A, Ghiasi R, Marjani A (2020) Strong chemisorption of E 2 H 2 and E 2 H 4 (E= C, Si) on B 12 N 12 nano-cage. J Nanostruct Chem 10:179–191. https://doi.org/10.1007/s40097-020-00340-2

    Article  Google Scholar 

  49. Najafi F (2020) Thermodynamic studies of carbon nanotube interaction with gemcitabine anticancer drug: DFT calculations. J Nanostruct Chem 10:227–242. https://doi.org/10.1007/s40097-020-00344-y

    Article  CAS  Google Scholar 

  50. Tang L, Zhang Y, Li C, Zhou Z, Nie X, Chen Y, Cao H, Liu B, Zhang N, Said Z (2022) Biological stability of water-based cutting fluids: progress and application. Chin J Mech Eng 35:1–24. https://doi.org/10.1186/s10033-021-00667-z

  51. Noei M, Peyghan AA (2013) A DFT study on the sensing behavior of a BC2N nanotube toward formaldehyde. J Mol Model 19:3843–3850

    Article  CAS  PubMed  Google Scholar 

  52. Peyghan AA, Baei MT, Hashemian S (2013) ZnO nanocluster as a potential catalyst for dissociation of H2S molecule. J Cluster Sci 24:341–347

    Article  CAS  Google Scholar 

  53. Peyghan AA, Noei M (2014) A theoretical study of lithium-intercalated pristine and doped carbon nanocones. J Mex Chem Soc 58:46–51

    CAS  Google Scholar 

  54. Peyghan AA, Soleymanabadi H, Bagheri Z (2015) Theoretical study of carbonyl sulfide adsorption on Ag-doped SiC nanotubes. J Iran Chem Soc 12:1071–1076

    Article  CAS  Google Scholar 

  55. Peyghan AA, Soleymanabadi H, Moradi M (2013) Structural and electronic properties of pyrrolidine-functionalized fullerenes. J Phys Chem Solids 74:1594–1598

    Article  CAS  Google Scholar 

  56. Kang J, Li J, Wu F, Li S-S, Xia J-B (2011) Elastic, electronic, and optical properties of two-dimensional graphyne sheet. J Phys Chem C 115:20466–20470

    Article  CAS  Google Scholar 

  57. Cranford SW, Buehler MJ (2011) Mechanical properties of graphyne. Carbon 49:4111–4121

    Article  CAS  Google Scholar 

  58. Zhang Y, Pei Q, Wang C (2012) Mechanical properties of graphynes under tension: a molecular dynamics study. Appl Phys Lett 101:08190. https://doi.org/10.1063/1.4747719

    Article  CAS  Google Scholar 

  59. Foroutan M, Fatemi SJ, Fatemi SM (2020) A mini-review on dispersion and functionalization of boron nitride nanotubes. J Nanostruct Chem 1–10. https://doi.org/10.1007/s40097-020-00347-9

  60. Rodrigues BS, Almeida VA, Claudino CH, Ponce-de-Leon C, Bavykin DV, Souza JS (2020) Direct polymerization of polyheptazine in the interlamelar spaces of titanate nanotubes enhances visible-light response. J Nanostruct Chem 10:363–376. https://doi.org/10.1007/s40097-020-00357-7

    Article  CAS  Google Scholar 

  61. Moradi O, Zare K, Monajjemi M, Yari M, Aghaie H (2010) The studies of equilibrium and thermodynamic adsorption of Pb (II), Cd (II) and Cu (II) ions from aqueous solution onto SWCNTs and SWCNT–COOH surfaces. Fullerenes, Nanotubes, Carbon Nanostruct 18:285–302

    Article  CAS  Google Scholar 

  62. Foroutan M, Fatemi SJ, Fatemi SM (2020) A mini-review on dispersion and functionalization of boron nitride nanotubes. J Nanostruct Chem 10:265–274. https://doi.org/10.1007/s40097-020-00347-9

    Article  CAS  Google Scholar 

  63. Moradi O, Zare K, Monajjemi M, Yari M, Aghaie H (2010) The studies of equilibrium and thermodynamic adsorption of Pb(II), Cd(II) and Cu(II) ions from aqueous solution onto SWCNTs and SWCNT –COOH surfaces. Fullerenes, Nanotubes Carbon Nanostruct 18:285–302

    Article  CAS  Google Scholar 

  64. Moradi O, Zare K (2011) Adsorption of Pb(II), Cd(II) and Cu(II) Ions from aqueous solution onto SWCNTs and SWCNT –COOH surfaces: kinetics study. Fullerenes, Nanotubes Carbon Nanostruct 19:628–652

    Article  CAS  Google Scholar 

  65. Moradi O, Zare K (2013) Adsorption of ammonium ion by multi-walled carbon nanotube: kinetics and thermodynamic studies. Fullerenes, Nanotubes Carbon Nanostruct 21:449–459

    Article  CAS  Google Scholar 

  66. Beheshtian J, Baei MT, Peyghan AA, Bagheri Z (2012) Electronic sensor for sulfide dioxide based on AlN nanotubes: a computational study. J Mol Model 18:4745–4750

    Article  CAS  PubMed  Google Scholar 

  67. Saha S, Dinadayalane TC, Murray JS, Leszczynska D, Leszczynski J (2012) Surface reactivity for chlorination on chlorinated (5, 5) armchair SWCNT: a computational approach. J Phys Chem C 116:22399–22410

    Article  CAS  Google Scholar 

  68. Beheshtian J, Peyghan AA, Bagheri Z (2012) Adsorption and dissociation of Cl2 molecule on ZnO nanocluster. Appl Surf Sci 258:8171–8176

    Article  CAS  Google Scholar 

  69. Deb J, Bhattacharya B, Singh NB, Sarkar U (2016) First principle study of adsorption of boron-halogenated system on pristine graphyne. Struct Chem 27:1221–1227

    Article  CAS  Google Scholar 

  70. Bandosz TJ, Seredych M, Rodríguez-Castellón E, Cheng Y, Daemen LL, Ramírez-Cuesta AJ (2016) Evidence for CO2 reactive adsorption on nanoporous S-and N-doped carbon at ambient conditions. Carbon 96:856–863

    Article  CAS  Google Scholar 

  71. Wu X, Li C, Zhou Z, Nie X, Chen Y, Zhang Y, Cao H, Liu B, Zhang N, Said Z (2021) Circulating purification of cutting fluid: an overview. Int J Adv Manuf 117:2565–2600. https://doi.org/10.1007/s00170-021-07854-1

  72. Zhao L, Yu B, Xue F, Xie J, Zhang X, Wu R, Wang R, Hu Z, Yang S-T, Luo J (2015) Facile hydrothermal preparation of recyclable S-doped graphene sponge for Cu2+ adsorption. J Hazard Mater 286:449–456

    Article  CAS  PubMed  Google Scholar 

  73. Ohno T, Miyamoto Z, Nishijima K, Kanemitsu H, Xueyuan F (2006) Sensitization of photocatalytic activity of S-or N-doped TiO2 particles by adsorbing Fe3+ cations. Appl Catal A 302:62–68

    Article  CAS  Google Scholar 

  74. Scarano D, Bertarione S, Zecchina A, Soave R, Pacchioni G (2002) Adsorption of CS 2 on MgO microcrystals: formation of a S-doped MgO surface. Phys Chem Chem Phys 4:366–374

    Article  CAS  Google Scholar 

  75. Ebrahim AM, Jagiello J, Bandosz TJ (2015) Enhanced reactive adsorption of H 2 S on Cu–BTC/S-and N-doped GO composites. J Mater Chem A 3:8194–8204

    Article  CAS  Google Scholar 

  76. Liao Y, Peng R, Peng S, Zeng W, Zhou Q (2021) The adsorption of H2 and C2H2 on Ge-doped and Cr-doped graphene structures: a DFT study. Nanomaterials 11:231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Toledano DS, Metcalf P, Henrich VE (2001) Photoemission studies of H2O adsorption on pure and Cr-doped V2O3. Surf Sci 472:21–32

    Article  CAS  Google Scholar 

  78. Buasaeng P, Rakrai W, Wanno B, Tabtimsai C (2017) DFT investigation of NH3, PH3, and AsH3 adsorptions on Sc-, Ti-, V-, and Cr-doped single-walled carbon nanotubes. Appl Surf Sci 400:506–514

    Article  CAS  Google Scholar 

  79. Shi LB, Wang YP, Dong HK (2015) First-principle study of structural, electronic, vibrational and magnetic properties of HCN adsorbed graphene doped with Cr, Mn and Fe. Appl Surf Sci 329:330–336

    Article  CAS  Google Scholar 

  80. Zhu L, Li Y, Zeng W (2017) Enhanced ethanol sensing and mechanism of Cr-doped ZnO nanorods: Experimental and computational study. Ceram Int 43:14873–14879

    Article  CAS  Google Scholar 

  81. Dyck O, Yoon M, Zhang L, Lupini AR, Swett JL, Jesse S (2020) Doping of Cr in graphene using electron beam manipulation for functional defect engineering. ACS Appl Nano Mater 3:10855–10863

    Article  CAS  Google Scholar 

  82. Wu SY, Liu H, Gu L, Singh R, Budd L, Van Schilfgaarde M, McCartney M, Smith DJ, Newman N (2003) Synthesis, characterization, and modeling of high quality ferromagnetic Cr-doped AlN thin films. Appl Phys Lett 82:3047–3049

    Article  CAS  Google Scholar 

  83. Meng A, Xing J, Li Z, Li Q (2015) Cr-doped ZnO nanoparticles: synthesis, characterization, adsorption property, and recyclability. ACS Appl Mater Interfaces 7:27449–27457

    Article  CAS  PubMed  Google Scholar 

  84. Gao H, Liu Z, Song L, Guo W, Gao W, Ci L, Rao A, Quan W, Vajtai R, Ajayan PM (2012) Synthesis of S-doped graphene by liquid precursor. Nanotechnology 23:275605–275611

    Article  PubMed  Google Scholar 

  85. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comp Chem 14:1347–1363

    Article  CAS  Google Scholar 

  86. Yang M, Kong Q, Feng W, Yao W, Wang Q (2021) Hierarchical porous nitrogen, oxygen, and phosphorus ternary doped hollow biomass carbon spheres for high-speed and long-life potassium storage. Carbon Energy. https://doi.org/10.1002/cey2.15710.1002/cey2.157

  87. Baei MT, Peyghan AA, Bagheri Z, Tabar MB (2012) B-doping makes the carbon nanocones sensitive towards NO molecules. Phys Lett A 377:107–111

    Article  CAS  Google Scholar 

  88. Wang J, Ai K, Lu L (2019) Flame-retardant porous hexagonal boron nitride for safe and effective radioactive iodine capture. J Mater Chem. A, Materials for Energy and Sustainability 7(28):16850–16858. https://doi.org/10.1039/C9TA04489B

  89. Dai Q, Shen K, Deng W, Cai Y, Yan J, Wu J, Zhan W (2021) HCl-Tolerant HxPO4/RuOx–CeO2 catalysts for extremely efficient catalytic elimination of chlorinated VOCs. Environ Sci Technol 55(6):4007–4016. https://doi.org/10.1021/acs.est.0c08256

  90. Fu H, Gao B, Hu C, Liu Z, Hu L, Kan J, Xing P (2021) 3D nitrogen-doped graphene created by the secondary intercalation of ethanol with enhanced specific capacity. Nanotechnology 33(7):75703. https://doi.org/10.1088/1361-6528/ac30c2

  91. Li Y, Macdonald DD, Yang J, Qiu J, Wang S (2020) Point defect model for the corrosion of steels in supercritical water: Part I, film growth kinetics. Corros Sci 163:108280. https://doi.org/10.1016/j.corsci.2019.108280

  92. Xu D, Liu Q, Qin Y (2021) Analytical approach for crack identification of glass fiber reinforced polymer–sea sand concrete composite structures based on strain dissipations. Structural Health Monitoring-An International Journal. https://doi.org/10.1177/1475921720974290

  93. Stegmeier S, Fleischer M, Hauptmann P (2010) Influence of the morphology of platinum combined with β-Ga2O3 on the VOC response of work function type sensors. Sens Actuators B Chem 148:439–449

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Zhang.

Ethics declarations

Ethics approval

We approved all ethics.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 45 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Zhang, H. A molecular modeling on the boron trichloride gas detection by S- and Cr-doped graphyne. J Mol Model 28, 38 (2022). https://doi.org/10.1007/s00894-021-05018-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-05018-2

Keywords

Navigation