Skip to main content
Log in

BF3 adsorption on pure, Al-doped, and Sc-doped graphene-like BC3: a DFT study

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The adsorption of boron trifluoride was explored onto pure, Al-doped, and Sc-doped BC3 nanosheets through density functional theory computations. As BF3 approaches the BC3, its adsorption releases 17.2–23.9 kJ/mol of energy, indicating a weak BF3 adsorption. Also, the electronic properties of the nanosheet do not change meaningfully. Unlike the Al-doping, Sc-doping advances the performance of the BC3 and makes it more reactive and sensitive to BF3. According to the calculations, the BF3 adsorption reduces the HOMO/LUMO gap of the Sc-doped boron carbide from 2.39 to 1.48 eV (~  − 38.1%), which can be concluded that the electrical conductivity of the nanosheet has increased. But Al-doped could not meaningfully modify the electronic properties of BC3 in the presence of BF3. Thus, the Sc-doped boron carbide can generate electrical signals when the BF3 molecules approach, being a promising sensor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ahmadi S, Hosseinian A, Kheirollahi Nezhad PD, Monfared A, Vessally E (2019) Iran J Chem Chem Eng 38:1–19

    CAS  Google Scholar 

  2. Vessally E, Mohammadi S, Abdoli M, Hosseinian A, Ojaghloo P (2020) Iran J Chem Chem Eng 39:11–19

    CAS  Google Scholar 

  3. Gharibzadeh F, Vessally E, Edjlali L, Es’haghi M, Mohammadi R (2020) Iran J Chem Chem Eng 39:51–62

    Google Scholar 

  4. Vessally E, Babazadeh M, Alipour F, Hosseinian A, Kheirollahi Nezhad PD (2021) Iran J Chem Chem Eng 40:691–703

    Google Scholar 

  5. Vessally E, Farajzadeh P, Najafi E (2021) Iran J Chem Chem Eng 40:1001–1011

    CAS  Google Scholar 

  6. Ma X, Kexin Z, Yonggang W, Ebadi AG, Toughani M (2021) Iran J Chem Chem Eng. https://doi.org/10.30492/IJCCE.2021.529010.4694

    Article  Google Scholar 

  7. Hashemzadeh B, Edjlali L, Kheirollahi Nezhad PD, Vessally E (2021) Chem Rev Lett. https://doi.org/10.22034/crl.2020.187273.1087

    Article  Google Scholar 

  8. Salehi N, Vessally E, Edjlali L, Alkorta I, Eshaghi M (2020) Chem Rev Lett 3:207–217

    CAS  Google Scholar 

  9. Sreerama L, Vessally E, Behmagham F (2020) J Chem Lett 1:9–18

    Google Scholar 

  10. Majedi S, Sreerama L, Vessally E, Behmagham F (2020) J Chem Lett 1:25–31

    Google Scholar 

  11. Koao LF, Hone FG, Dejene FB (2020) J Nanostruct Chem 10:1–7

    CAS  Google Scholar 

  12. Xie J, Chen Y, Yin L, Zhang T, Wang S, Wang L (2021) J Manuf Process 64:473

    Google Scholar 

  13. Chen Y, Sang M, Jiang W, Wang Y, Zou Y, Lu C, Ma Z (2021) Eng Fract Mech 253:107866

    Google Scholar 

  14. Yang K, Liu Q, Zheng Y, Yin H, Zhang S, Tang Y (2021) Angew Chem Int Ed 60:6326

    CAS  Google Scholar 

  15. Zhang X, Tang Y, Zhang F, Lee C (2016) Adv Energy Mater 6:1502588

    Google Scholar 

  16. Sheng M, Zhang F, Ji B, Tong X, Tang Y (2017) Adv Energy Mater 7:1601963

    Google Scholar 

  17. Ji B, Zhang F, Song X, Tang Y (2017) Adv Mater (Weinheim) 29:1700519

    Google Scholar 

  18. Wang X, Feng Z, Xiao B, Zhao J, Ma H, Tian Y, Tan L (2020) Green Chem 22:6157

    CAS  Google Scholar 

  19. Malinga NN, Jarvis ALL (2020) J Nanostruct Chem 10:55–68

    CAS  Google Scholar 

  20. Aragaw BA (2020) J Nanostruct Chem 10:9–18

    CAS  Google Scholar 

  21. Rezaei A, Ghiasi R, Marjani A (2020) J Nanostruct Chem 10:179–191

    Google Scholar 

  22. Najafi F (2020) J Nanostruct Chem 10:227–242

    CAS  Google Scholar 

  23. Foroutan M, Fatemi SJ, Fatemi SM (2020) J Nanostruct Chem 10:265–274

    CAS  Google Scholar 

  24. Chen R, Cheng Y, Wang P, Wang Q, Wan S, Huang S, Wang Y (2021) Sci Total Environ 756:143871

    CAS  PubMed  Google Scholar 

  25. Chen R, Cheng Y, Wang P, Wang Y, Wang Q, Yang Z, Su C (2021) Chem Eng Sci (Lausanne, Switzerland) 421:129682

    CAS  Google Scholar 

  26. Shi C, Zhang X, Zhang X, Chen P, Xu L (2021) Ultrason Sonochem 76:105662

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang X, Sun X, Lv T, Weng L, Chi M, Shi J, Zhang S (2020) J Mater Sci: Mater Electron 31:13344

    CAS  Google Scholar 

  28. Zhang K, Qiu L, Tao J, Zhong X, Lin Z, Wang R, Liu Z (2021) Hydrometallurgy 205:105722

    CAS  Google Scholar 

  29. Fan Z, Ji P, Zhang J, Segets D, Chen D, Chen S (2021) J Membr Sci 635:119503

    CAS  Google Scholar 

  30. Rodrigues BS, Almeida VA, Claudino CH et al (2020) J Nanostruct Chem 10:363–376

    CAS  Google Scholar 

  31. Moradi O, Zare K, Monajjemi M, Yari M, Aghaie H (2010) Fuller Nanotub Carbon Nanostruct 18:285–302

    CAS  Google Scholar 

  32. Moradi O, Zare K (2011) Fuller Nanotub Carbon Nanostruct 19:628–652

    CAS  Google Scholar 

  33. Moradi O, Zare K (2013) Fuller Nanotub Carbon Nanostruct 21:449–459

    CAS  Google Scholar 

  34. Ding Y, Ni J (2009) J Phys Chem C 113:18468

    CAS  Google Scholar 

  35. Li SS (2012) Semiconductor physical electronics. Springer Science & Business Media, Berlin

    Google Scholar 

  36. Stegmeier S, Fleischer M, Hauptmann P (2010) Sens Actuators B 148:439

    CAS  Google Scholar 

  37. Zhang Y, Pei Q, Wang C (2012) Appl Phys Lett 101:081909

    Google Scholar 

  38. O’boyle NM, Tenderholt AL, Langner KM (2008) J Comput Chem 29:839

    PubMed  Google Scholar 

  39. Baei MT, Peyghan AA, Bagheri Z, Tabar MB (2012) Phys Lett A 377:107

    CAS  Google Scholar 

  40. Adhikari K, Ray A (2011) Phys Lett A 375:1817

    CAS  Google Scholar 

  41. Zhao G, Li X, Huang M, Zhen Z, Zhong Y, Chen Q, Zhao X, He Y, Hu R, Yang T (2017) Chem Soc Rev 46:4417

    CAS  PubMed  Google Scholar 

  42. Deng Z, Liu C, Zhu Z (2021) Int J Electr Power Energy Syst 125:106499

    Google Scholar 

  43. Deng Z, Wang B, Xu Y, Xu T, Liu C, Zhu Z (2019) IEEE Access 7:88058

    Google Scholar 

Download references

Acknowledgements

Chongqing Higher Education Teaching Reform Research Project (202093S), Science and Technology Research Project of Chongqing Education Commission (KJQN202004501), and Research Project of Humanities and Social Sciences in Chongqing (18skgh211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Li, W., Song, C. et al. BF3 adsorption on pure, Al-doped, and Sc-doped graphene-like BC3: a DFT study. Monatsh Chem 152, 1553–1560 (2021). https://doi.org/10.1007/s00706-021-02859-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02859-8

Keywords

Navigation