Skip to main content
Log in

Effects of molecular vacancy and ethylenediamine on structural and electronic properties of CH3NO2 surfaces

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structural and electronic properties of (100) surface for nitromethane (NM) are studied using density functional theory (DFT) with the generalized gradient approximation and Perdew-Burke-Ernzerhof functional (GGA-PBE). Molecular vacancy and ethylenediamine (C2H8N2) substitution are considered in this work. We find that ethylenediamine substitution significantly decreases the band gap, while molecular vacancy increases the band gap slightly. It indicates that ethylenediamine substitution has a positive effect on the impact sensitivity of NM. Also, the formation energies are calculated and the reasons for the decrease of band gap for ethylenediamine substitution and the increase of band gap for CH3NO2 vacancy are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang BP, Zhang QM, Huang FL (2001) Detonation physics. Ordnance Industry Press, p 154

  2. Dremin AN, Rozanov OK, Savrov SD, Yakushev VV (1967). Fizika Goreniya I Vzryva 3:11–18

    CAS  Google Scholar 

  3. Hu QX (1998). J Explos 2:33–35

    Google Scholar 

  4. Jin SH, Wang W, Song QC (2006). Chin Explos Mater 35:11–14

    Google Scholar 

  5. Delpuech A, Cherville J (1979). Propellants Explos 4:121–128

    Article  CAS  Google Scholar 

  6. Delpuech A, Cherville J (1978). Propellants Explos 3:169–175

    Article  CAS  Google Scholar 

  7. Zhu W, Xiao H (2010). Struct Chem 21:657–665

    Article  CAS  Google Scholar 

  8. Zhu WH, Zhang XW, Xiao HM (2010). J Nergetic Mater 18:431–434

    Google Scholar 

  9. Rice BM, Hare JJ, Phys J (2002). Chem A 106:1770–1783

    CAS  Google Scholar 

  10. Zhang CY, Shu YJ, Huang YG, Zhao XD, Dong HS, Phys J (2005). Chem B 109:8978–8982

    Article  CAS  Google Scholar 

  11. Zhong M, Liu QJ, Jiang CL, Qin H, Zhao F, Shang HL, Liu FS, Tang B (2018). Chin J Phys 56:3033–3038

    Article  CAS  Google Scholar 

  12. Campbell AW, Malin ME, Holland TE (1956). J Appl Phys 27:963

    Article  CAS  Google Scholar 

  13. Zhang L, Chen L (2013). Acta Phys Sin 62:138201

    Google Scholar 

  14. Audrieth LF, Eriksen LH, Tomlinson WR U.S. Patent 3, 309, 251[P]. 1967-3-14

  15. Fedorov AV, Mikhaylov AL, Men AV (2010). J Energy Mater 28:205–215

    Article  CAS  Google Scholar 

  16. Kuklja MM, Kunz AB, Phys J (1999). Chem B 103:8427–8431

    Article  CAS  Google Scholar 

  17. Zhang Q, Li W, Lin DC, He N, Duan Y (2011). J Hazard Mater 185:756–762

    Article  CAS  PubMed  Google Scholar 

  18. Chang J, Lian P, Wei DQ, Chen XR, Zhang QM, Gong ZZ (2010). Phys Rev Lett 105:188302

    Article  PubMed  Google Scholar 

  19. Menikoff R, Shaw MS (2011). Combust Flame 158:2549–2558

    Article  CAS  Google Scholar 

  20. Appalakondaiah S, Vaitheeswaran G, Lebègue S (2013). J Chem Phys 138:184705

    Article  CAS  PubMed  Google Scholar 

  21. Fanetti S, Citroni M, Falsini N, Bini R, Phys J (2018). Chem C 122:2023–2031

    CAS  Google Scholar 

  22. Islam MM, Strachan A, Phys J (2019). Chem C 123:2613–2626

    CAS  Google Scholar 

  23. Ren FD, Cao DL, Shi WJ, You M (2017). RSC Adv 7:47063

    Article  CAS  Google Scholar 

  24. Zhong M, Liu QJ, Qin H, Jiao Z, Zhao F, Shang HL, Liu FS, Liu ZT (2017). Eur Phys J B 90:115

    Article  Google Scholar 

  25. Zhong M, Qin H, Liu QJ, Jiang CL, Zhao F, Shang HL, Liu FS, Tang B (2018). J Mol Model 24:295

    Article  PubMed  Google Scholar 

  26. Zhong M, Qin H, Liu QJ, Jiang CL, Zhao F, Shang HL, Liu FS, Tang B (2019). J Mol Model 25:164

    Article  PubMed  Google Scholar 

  27. Trevino SF, Prince E, Hubbard CR (1980). J Chem Phys 73:2996–3000

    Article  CAS  Google Scholar 

  28. Xu JC, Zhao JJ (2009). Acta Phys Sin 58:4144–4149

    CAS  Google Scholar 

  29. Liu H, Zhao JJ, Wei DQ, Gong ZZ (2006). J Chem Phys 124:124501

    Article  PubMed  Google Scholar 

  30. Zheng LQ, Lu SN, Thompson DL (2006). J Chem Phys 124:154504

    Article  PubMed  Google Scholar 

  31. Walker FE (1979). Acta Astronaut 6:807–813

    Article  CAS  Google Scholar 

  32. Utkin AV, Mochalova VM, Logvinenko AA (2013). Combust Explo Shock 49:478–483

    Article  Google Scholar 

  33. Gupta YM, Pangilinan GI, Winey JM, Constantinou CP (1995). Chem Phys Lett 232:341–345

    Article  CAS  Google Scholar 

  34. Hohenberg P, Kohn W (1964). Phys Rev 136:B864

    Article  Google Scholar 

  35. Kohn W, Sham LJ (1965). Phys Rev 140:A1133

    Article  Google Scholar 

  36. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005). Z Kristallogr 220:567–570

    CAS  Google Scholar 

  37. Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865–3868

    CAS  PubMed  Google Scholar 

  38. Grimme S (2006). J Comput Chem 27:1787

    Article  CAS  PubMed  Google Scholar 

  39. Monkhorst HJ, Pack JD (1976). Phys Rev B 13:5188

    Article  Google Scholar 

  40. Zhu YM, Zhang L, Zhao B, Chen HJ, Liu X, Zhao R, Wang XW, Liu J, Chen Y, Liu ML (2019). Adv Funct Mater 29:1901783

    Article  Google Scholar 

  41. Li PG, Ding T, Li JQ, Zhang CX, Dou YB, Li Y, Hu LP, Liu FS, Zhang CH (2020). Adv Funct Mater 30:1910059

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-Lu Jiang or Xiang-Hui Chang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, ZX., Zeng, W., Tang, B. et al. Effects of molecular vacancy and ethylenediamine on structural and electronic properties of CH3NO2 surfaces. J Mol Model 26, 209 (2020). https://doi.org/10.1007/s00894-020-04476-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04476-4

Keywords

Navigation