Skip to main content

Advertisement

Log in

Exploring free energy profile of petroleum thermal cracking mechanisms

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Understanding the mechanisms of petroleum thermal cracking is critical to develop more efficient and eco-friendly petroleum cracking processes. Asphaltenes are the main component of petroleum subjected to cracking processes. Thermal cracking mechanisms of petroleum were explored by computational methods using 1,2-diphenylethane (DPE) as a model molecule in this study. The overall mechanisms were divided into four steps including initiation, H-transfer reaction, H-ipso reaction, and termination represented by seven reactions. We carried out extensive quantum chemistry calculations at high levels of theory to accurately explore the minimum energy pathways as the mechanisms of the proposed reactions. The reaction energy and barriers in terms of enthalpy and free energy and their temperature dependence were calculated in the vacuum and in both polar and nonpolar solvents using the polarizable continuum model (PCM) method. The temperature dependence of the target reaction barriers are characterized in different environments and provides computational guidance for future development for petroleum thermal cracking. As the first reported systematic investigation of petroleum cracking mechanisms, this study provided a comprehensive theoretical description of petroleum cracking processes with valuable information about temperature and solvent dependence.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Long RB, Speight JG (1997) The composition of petroleum. Petroleum chemistry and refining1st edn. CRC Press, Boca Raton, pp 1–38

    Google Scholar 

  2. Speight JG (2015) Handbook of petroleum product analysis. Hoboken, New Jersey

    Google Scholar 

  3. McCain Jr WD (2017) Properties of petroleum fluids. Tulsa, Oklahoma

    Google Scholar 

  4. Speight JG (2003) Thermal cracking of petroleum. Natural and laboratory-simulated thermal geochemical processes. Springer, Dordrecht, pp 31–52

    Chapter  Google Scholar 

  5. Speight JG (2014) The chemistry and technology of petroleum. Boca Raton

    Book  Google Scholar 

  6. Speight J (2004) Petroleum asphaltenes-part 1: asphaltenes, resins and the structure of petroleum. Oil Gas Sci. Technol. 59(5):467–477. https://dx.doi.org/10.2516/ogst:2004032

  7. Hurd CD (1929) The pyrolysis of carbon compounds, New York

  8. Fabuss B, Smith J, Lait R, Fabuss M, Satterfield C (1964) Kinetics of thermal cracking of paraffinic and naphthenic fuels at elevated pressures. Industrial & Engineering Chemistry Process Design and Development 3(1):33–37. https://doi.org/10.1021/i260009a009

    Article  CAS  Google Scholar 

  9. Eliel EL, Wilen SH, Mander LN (1994) Stereochemistry of organic compounds, vol vol 13. Wiley & Sons, Inc., New York, pp 991–1118

    Google Scholar 

  10. ElGalad M, El-Khatib K, Abdelkader E, El-Araby R, ElDiwani G, Hawash S (2018) Empirical equations and economical study for blending biofuel with petroleum jet fuel. J. Adv. Res. 9:43–50. https://doi.org/10.1016/j.jare.2017.10.005

    Article  CAS  PubMed  Google Scholar 

  11. Brouwer D, Hogeveen H (1972) Electrophilic substitutions at alkanes and in alkylcarbonium ions. Prog. Phys. Org. Chem. 9:179–240. https://doi.org/10.1002/9780470171882.ch4

    Chapter  Google Scholar 

  12. Ungerer P (1990) State of the art of research in kinetic modelling of oil formation and expulsion. Org. Geochem. 16(1–3):1–25. https://doi.org/10.1016/0146-6380(90)90022-R

    Article  CAS  Google Scholar 

  13. Poutsma M (1976) Mechanistic considerations of hydrocarbon transformations catalyzed by zeolites. American Chemical Society, Washington, DC

    Google Scholar 

  14. Park H-B, Kim K-D, Lee Y-K (2018) Promoting asphaltene conversion by tetralin for hydrocracking of petroleum pitch. Fuel 222:105–113. https://doi.org/10.1016/j.fuel.2018.02.154

    Article  CAS  Google Scholar 

  15. Greensfelder B, Voge H, Good G (1949) Catalytic and thermal cracking of pure hydrocarbons: mechanisms of reaction. Ind. Eng. Chem. 41(11):2573–2584. https://doi.org/10.1021/ie50479a043

    Article  CAS  Google Scholar 

  16. Maihom T, Pantu P, Tachakritikul C, Probst M, Limtrakul J (2010) Effect of the zeolite nanocavity on the reaction mechanism of n-hexane cracking: a density functional theory study. J. Phys. Chem. C 114(17):7850–7856. https://doi.org/10.1021/jp911732p

    Article  CAS  Google Scholar 

  17. Wu G, Katsumura Y, Matsuura C, Ishigure K, Kubo J (1996) Comparison of liquid-phase and gas-phase pure thermal cracking of n-hexadecane. Ind. Eng. Chem. Res. 35(12):4747–4754. https://doi.org/10.1021/ie960280k

    Article  CAS  Google Scholar 

  18. Kaminski T, Husein MM (2018) Thermal cracking of atmospheric residue versus vacuum residue. Fuel Process. Technol. 181:331–339. https://doi.org/10.1016/j.fuproc.2018.10.014

    Article  CAS  Google Scholar 

  19. Corma A, Sauvanaud L, Mathieu Y, Al-Bogami S, Bourane A, Al-Ghrami M (2018) Direct crude oil cracking for producing chemicals: thermal cracking modeling. Fuel 211:726–736. https://doi.org/10.1016/j.fuel.2017.09.099

    Article  CAS  Google Scholar 

  20. Alshareef AH, Scherer A, Tan X, Azyat K, Stryker JM, Tykwinski RR, Gray MR (2011) Formation of archipelago structures during thermal cracking implicates a chemical mechanism for the formation of petroleum asphaltenes. Energy Fuel 25(5):2130–2136. https://doi.org/10.1021/ef200170a

    Article  CAS  Google Scholar 

  21. Bounaceur R, Scacchi G, Marquaire P-M, Dominé F (2000) Mechanistic modeling of the thermal cracking of tetralin. Ind. Eng. Chem. Res. 39(11):4152–4165. https://doi.org/10.1021/ie000276f

    Article  CAS  Google Scholar 

  22. Rakotoalimanana DA, Bounaceur R, Béhar F, Burklé-Vitzthum V, Marquaire P-M (2016) Thermal cracking of n-butylcyclohexane at high pressure (100 bar)—part 2: mechanistic modeling. J. Anal. Appl. Pyrolysis 120:174–185. https://doi.org/10.1016/j.jaap.2016.05.003

    Article  CAS  Google Scholar 

  23. Montoya T, Argel BL, Nassar NN, Franco CA, Cortés FB (2016) Kinetics and mechanisms of the catalytic thermal cracking of asphaltenes adsorbed on supported nanoparticles. Pet. Sci. 13(3):561–571

    Article  CAS  Google Scholar 

  24. Swisher JA, Hansen N, Maesen T, Keil FJ, Smit B, Bell AT (2010) Theoretical simulation of n-alkane cracking on zeolites. J. Phys. Chem. C 114(22):10229–10239

    Article  CAS  Google Scholar 

  25. Taketsugu T, Gordon MS (1995) Dynamic reaction path analysis based on an intrinsic reaction coordinate. J. Chem. Phys. 103(23):10042–10049. https://doi.org/10.1063/1.470704

    Article  CAS  Google Scholar 

  26. Mennucci B, Tomasi J, Cammi R, Cheeseman J, Frisch M, Devlin F, Gabriel S, Stephens P (2002) Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules. J. Phys. Chem. A 106(25):6102–6113. https://doi.org/10.1021/jp020124t

    Article  CAS  Google Scholar 

  27. van der Vaart A, Karplus M (2007) Minimum free energy pathways and free energy profiles for conformational transitions based on atomistic molecular dynamics simulations. J. Chem. Phys. 126(16):164106. https://doi.org/10.1063/1.2719697

    Article  CAS  PubMed  Google Scholar 

  28. Petrone A, Cimino P, Donati G, Hratchian HP, Frisch MJ, Rega N (2016) On the driving force of the excited-state proton shuttle in the green fluorescent protein: a time-dependent density functional theory (TD-DFT) study of the intrinsic reaction path. J. Chem. Theory Comput. 12(10):4925–4933

    Article  CAS  Google Scholar 

  29. Smith CM, Savage PE (1994) Reactions of polycyclic alkylaromatics—VI. Detailed chemical kinetic modeling. Chem. Eng. Sci. 49(2):259–270. https://doi.org/10.1016/0009-2509(94)80043-X

    Article  CAS  Google Scholar 

  30. Cardozo SD, Schulze M, Tykwinski RR, Gray MR (2015) Addition reactions of olefins to asphaltene model compounds. Energy Fuel 29(3):1494–1502. https://doi.org/10.1021/ef502616v

    Article  CAS  Google Scholar 

  31. Santos Silva H, Alfarra A, Vallverdu G, Bégué D, Bouyssiere B, Baraille I (2018) Impact of H-bonds and porphyrins on asphaltene aggregation as revealed by molecular dynamics simulations. Energy Fuel 32(11):11153–11164. https://doi.org/10.1021/acs.energyfuels.8b01901

    Article  CAS  Google Scholar 

  32. Badran I, Nassar NN, Marei NN, Hassan A (2016) Theoretical and thermogravimetric study on the thermo-oxidative decomposition of Quinolin-65 as an asphaltene model molecule. RSC Adv. 6(59):54418–54430. https://doi.org/10.1039/C6RA07761G

    Article  CAS  Google Scholar 

  33. Qi X, Wang D, Xin H, Qi G (2013) In situ FTIR study of real-time changes of active groups during oxygen-free reaction of coal. Energy Fuel 27(6):3130–3136. https://doi.org/10.1021/ef400534f

    Article  CAS  Google Scholar 

  34. Qi X, Chen L, Xin H, Ji Y, Bai C, Song R, Xue H, Liu F (2018) Reaction mechanism and thermodynamic properties of aliphatic hydrocarbon groups during coal self-heating. Energy Fuel 32(10):10469–10477. https://doi.org/10.1021/acs.energyfuels.8b02165

    Article  CAS  Google Scholar 

  35. Rice F (1933) The thermal decomposition of organic compounds from the standpoint of free radicals III. The calculation of the products formed from paraffin hydrocarbons. J Am Chem Soc 55(7):3035–3040. https://doi.org/10.1021/ja01334a075

    Article  CAS  Google Scholar 

  36. Kossiakoff A, Rice FO (1943) Thermal decomposition of hydrocarbons, resonance stabilization and isomerization of free radicals1. J. Am. Chem. Soc. 65(4):590–595. https://doi.org/10.1021/ja01244a028

    Article  CAS  Google Scholar 

  37. Huang X, Gu J, Cheng D-G, Chen F, Zhan X (2013) Pathways of liquefied petroleum gas pyrolysis in hydrogen plasma: a density functional theory study. Journal of Energy Chemistry 22(3):484–492. https://doi.org/10.1016/S2095-4956(13)60063-7

    Article  CAS  Google Scholar 

  38. Hao H, Lian P, Gong J, Gao R (2018) Theoretical study on the hydrogenation mechanisms of model compounds of heavy oil in a plasma-driven catalytic system. Catalysts 8(9):381. https://doi.org/10.3390/catal8090381

    Article  CAS  Google Scholar 

  39. Xiao Y, Longo J, Hieshima G, Hill R (1997) Understanding the kinetics and mechanisms of hydrocarbon thermal cracking: an ab initio approach. Ind. Eng. Chem. Res. 36(10):4033–4040. https://doi.org/10.1021/ie960724c

    Article  CAS  Google Scholar 

  40. Schiesser C, Skidmore M (1999) An ab initio study of β-fragmentation reactions in some alkoxyacyl (alkoxycarbonyl) and related radicals. J. Chem. Soc. Perkin Trans. 2(10):2041–2047. https://doi.org/10.1039/A904809J

    Article  Google Scholar 

  41. Hunter KC, East AL (2002) Properties of C−C bonds in n-alkanes: relevance to cracking mechanisms. J. Phys. Chem. A 106(7):1346–1356. https://doi.org/10.1021/jp0129030

    Article  CAS  Google Scholar 

  42. Raucci U, Savarese M, Adamo C, Ciofini I, Rega N (2015) Intrinsic and dynamical reaction pathways of an excited state proton transfer. J. Phys. Chem. B 119(6):2650–2657. https://doi.org/10.1021/jp508947f

    Article  CAS  PubMed  Google Scholar 

  43. Tsutsumi T, Ono Y, Arai Z, Taketsugu T (2018) Visualization of the intrinsic reaction coordinate and global reaction route map by classical multidimensional scaling. J. Chem. Theory Comput. 14(8):4263–4270. https://doi.org/10.1021/acs.jctc.8b00176

    Article  CAS  PubMed  Google Scholar 

  44. Gray MR (2003) Consistency of asphaltene chemical structures with pyrolysis and coking behavior. Energy Fuel 17(6):1566–1569. https://doi.org/10.1021/ef030015t

    Article  CAS  Google Scholar 

  45. Girdler R (1965) Constitution of asphaltenes and related studies. In: Assoc Asphalt Paving Technol Proc:45–79

  46. Moschopedis SE, Fryer JF, Speight JG (1976) Investigation of asphaltene molecular weights. Fuel 55(3):227–232. https://doi.org/10.1016/0016-2361(76)90093-4

    Article  CAS  Google Scholar 

  47. Kawai H, Kumata F (1998) Free radical behavior in thermal cracking reaction using petroleum heavy oil and model compounds. Catal. Today 43(3–4):281–289. https://doi.org/10.1016/S0920-5861(98)00157-6

    Article  CAS  Google Scholar 

  48. Guthrie RD (2000) Thermolysis of organic compounds under H2 (D2). J. Anal. Appl. Pyrolysis 54(1–2):89–107. https://doi.org/10.1016/S0165-2370(99)00080-7

    Article  CAS  Google Scholar 

  49. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys. Rev. 136(3B):B864. https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  50. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A):A1133. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  51. Parr RG (1980) Density functional theory of atoms and molecules. Horizons of quantum chemistry. Springer, Dordrecht, pp 5–15. https://doi.org/10.1007/978-94-009-9027-2_2

    Chapter  Google Scholar 

  52. Salahub DR (1989) The challenge of d and f electrons: theory and computation. In. ACS Symposium Series. American Chemical Society. https://doi.org/10.1021/bk-1989-0394.fw001

  53. Frisch MJ, Head-Gordon M, Pople JA (1990) A direct MP2 gradient method. Chem. Phys. Lett. 166(3):275–280. https://doi.org/10.1016/0009-2614(90)80029-D

    Article  CAS  Google Scholar 

  54. Frisch MJ, Head-Gordon M, Pople JA (1990) Semi-direct algorithms for the MP2 energy and gradient. Chem. Phys. Lett. 166(3):281–289. https://doi.org/10.1016/0009-2614(90)80030-H

    Article  CAS  Google Scholar 

  55. Head-Gordon M, Pople JA, Frisch MJ (1988) MP2 energy evaluation by direct methods. Chem. Phys. Lett. 153(6):503–506. https://doi.org/10.1016/0009-2614(88)85250-3

    Article  CAS  Google Scholar 

  56. Sæbø S, Almlöf J (1989) Avoiding the integral storage bottleneck in LCAO calculations of electron correlation. Chem. Phys. Lett. 154(1):83–89. https://doi.org/10.1016/0009-2614(89)87442-1

    Article  Google Scholar 

  57. Head-Gordon M, Head-Gordon T (1994) Analytic MP2 frequencies without fifth-order storage. Theory and application to bifurcated hydrogen bonds in the water hexamer. Chem. Phys. Lett. 220(1–2):122–128. https://doi.org/10.1016/0009-2614(94)00116-2

    Article  CAS  Google Scholar 

  58. Čížek J (1969) On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules. Adv. Chem. Phys.:35–89. https://doi.org/10.1002/9780470143599.ch2

    Chapter  Google Scholar 

  59. Purvis III GD, Bartlett RJ (1982) A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J. Chem. Phys. 76(4):1910–1918. https://doi.org/10.1063/1.443164

    Article  CAS  Google Scholar 

  60. Scuseria GE, Janssen CL, Schaefer Iii HF (1988) An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations. J. Chem. Phys. 89(12):7382–7387. https://doi.org/10.1063/1.455269

    Article  CAS  Google Scholar 

  61. Scuseria GE, Schaefer III HF (1989) Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)? J. Chem. Phys. 90(7):3700–3703. https://doi.org/10.1063/1.455827

    Article  CAS  Google Scholar 

  62. Montgomery Jr JA, Frisch MJ, Ochterski JW, Petersson GA (2000) A complete basis set model chemistry VII. Use of the minimum population localization method. J Chem Phys 112(15):6532–6542. https://doi.org/10.1063/1.481224

    Article  CAS  Google Scholar 

  63. Montgomery Jr JA, Frisch MJ, Ochterski JW, Petersson GA (1999) A complete basis set model chemistry VI. Use of density functional geometries and frequencies. J Chem Phys 110(6):2822–2827. https://doi.org/10.1063/1.477924

    Article  CAS  Google Scholar 

  64. Fukui K (1981) The path of chemical reactions-the IRC approach. Acc. Chem. Res. 14(12):363–368. https://doi.org/10.1021/ar00072a001

    Article  CAS  Google Scholar 

  65. Hratchian H, Schlegel H (2005) Theory and applications of computational chemistry: the first 40 years Dykstra, CE:195-249

  66. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 rev. B.01 Wallingford, CT

  67. Vernon LW (1980) Free radical chemistry of coal liquefaction: role of molecular hydrogen. Fuel 59(2):102–106. https://doi.org/10.1016/0016-2361(80)90049-6

    Article  CAS  Google Scholar 

  68. Marsh H, Martı́nez-Escandell M, Rodrı́guez-Reinoso F (1999) Semicokes from pitch pyrolysis: mechanisms and kinetics. Carbon 37 (3):363–390. doi:https://doi.org/10.1016/S0008-6223(98)00205-X

    Article  CAS  Google Scholar 

  69. Pham HH, Taylor CD, Henson NJ (2013) First-principles prediction of the effects of temperature and solvent selection on the dimerization of benzoic acid. J. Phys. Chem. B 117(3):868–876. https://doi.org/10.1021/jp3062465

    Article  CAS  PubMed  Google Scholar 

  70. Gupta M, Svendsen HF, Silva EFD (2010) Temperature sensitivity of piperazine and its derivatives using polarizable continuum solvation model. 2010 2nd International Conference on Chemical, Biological and Environmental Engineering, 2–4 Nov. 2010:386–390. https://doi.org/10.1109/ICBEE.2010.5653461

  71. Balevicius V, Balevicius VJ, Aidas K, Fuess H (2007) Determination of critical indices by “slow” spectroscopy: NMR shifts by statistical thermodynamics and density functional theory calculations. J. Phys. Chem. B 111(10):2523–2532. https://doi.org/10.1021/jp065477x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Computational time was provided by the Southern Methodist University’s Centre for Scientific Computation.

Funding

Acknowledgment is made to the donors of the American Chemical Society Petroleum Research Fund for support of this research [grant number 57521-DNI6].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Tao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Tao, P. Exploring free energy profile of petroleum thermal cracking mechanisms. J Mol Model 26, 15 (2020). https://doi.org/10.1007/s00894-019-4273-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4273-3

Keywords

Navigation