Skip to main content
Log in

Theoretical UV-Vis spectra of tetracationic porphyrin: effects of environment on electronic spectral properties

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Electronic and spectroscopic properties of tetracationic 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphyrin (TMPyP) were investigated in the framework of the density functional theory (DFT). Modeling of implicit solvent, charge effects, and medium acidity were performed and compared with experimental results. Various hybrid exchange correlation functionals in the Kohn-Sham Scheme of the DFT were employed and various porphyrin models were constructed, simulating different environmental conditions. Since porphyrins present several technological applications with a plethora of interacting systems and the optical spectra profiles are often used to characterize these macrocyclic compounds, the study performed here aims to stablish a correct description of the UV-Vis spectrum. These results allowed to reproduce, both qualitatively as well as quantitatively, the Soret band of the TMPyP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Auwärter W, Écija D, Klappenberger F, Barth JV (2015) Porphyrins at interfaces. Nat Chem 7:105–120. https://doi.org/10.1038/nchem.2159

    Article  CAS  PubMed  Google Scholar 

  2. Gouterman M, Wagnière GH, Snyder LC (1963) Spectra of porphyrins. J Mol Spectrosc 11:108–127. https://doi.org/10.1016/0022-2852(63)90011-0

    Article  CAS  Google Scholar 

  3. Takagi S, Eguchi M, Tryk D, Inoue H (2006) Porphyrin photochemistry in inorganic/organic hybrid materials: clays, layered semiconductors, nanotubes, and mesoporous materials. J Photochem Photobiol C: Photochem Rev 7:104–126. https://doi.org/10.1016/j.jphotochemrev.2006.04.002

    Article  CAS  Google Scholar 

  4. Alberti G, Constantino U (1996) Solid-state supramolecular chemistry: two- and three-dimensional inorganic networks1st edn. Pergamon, New York

    Google Scholar 

  5. Li C, Ly J, Lei B et al (2004) Data storage studies on nanowire transistors with self-assembled porphyrin molecules. J Phys Chem B 108:9646–9649. https://doi.org/10.1021/jp0498421

    Article  CAS  Google Scholar 

  6. Rezaeifard A, Jafarpour M (2014) The catalytic efficiency of Fe-porphyrins supported on multi-walled carbon nanotubes in the heterogeneous oxidation of hydrocarbons and sulfides in water. Catal Sci Technol 4:1960. https://doi.org/10.1039/c3cy00554b

    Article  CAS  Google Scholar 

  7. Qiao J, Liu Y, Hong F, Zhang J (2014) A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev 43:631–675. https://doi.org/10.1039/C3CS60323G

    Article  CAS  PubMed  Google Scholar 

  8. Duan X, Huang Y, Jiang S et al (2013) Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity. Nat Commun 4:2225. https://doi.org/10.1038/ncomms3225

    Article  CAS  PubMed  Google Scholar 

  9. Tuffy B (2011) Porphyrin materials for organic light emitting diodes1st edn. LAP LAMBERT Academic Publishing, Saarbrücken

    Google Scholar 

  10. Ji L, Devaramani S, Mao X et al (2017) Behaviors of the interfacial consecutive multistep electron transfer controlled by varied transition metal ions in porphyrin cores. J Phys Chem B 121:9045–9051. https://doi.org/10.1021/acs.jpcb.7b07009

    Article  CAS  PubMed  Google Scholar 

  11. Kuch W, Bernien M (2017) Controlling the magnetism of adsorbed metal–organic molecules. J Phys Condens Matter 29:023001. https://doi.org/10.1088/0953-8984/29/2/023001

    Article  CAS  PubMed  Google Scholar 

  12. Bhandary S, Brena B, Panchmatia PM et al (2013) Manipulation of spin state of iron porphyrin by chemisorption on magnetic substrates. Phys Rev B 88:024401. https://doi.org/10.1103/PhysRevB.88.024401

    Article  CAS  Google Scholar 

  13. Mohnani S, Bonifazi D (2010) Supramolecular architectures of porphyrins on surfaces: the structural evolution from 1D to 2D to 3D to devices. Coord Chem Rev 254:2342–2362. https://doi.org/10.1016/j.ccr.2010.05.006

    Article  CAS  Google Scholar 

  14. Gottfried JM (2015) Surface chemistry of porphyrins and phthalocyanines. Surf Sci Rep 70:259–379. https://doi.org/10.1016/j.surfrep.2015.04.001

    Article  CAS  Google Scholar 

  15. Díaz C, Catalán-Toledo J, Flores ME et al (2017) Dispersion of the photosensitizer 5,10,15,20-tetrakis(4-sulfonatophenyl)-porphyrin by the amphiphilic polymer poly(vinylpirrolidone) in highly porous solid materials designed for photodynamic therapy. J Phys Chem B 121:7373–7381. https://doi.org/10.1021/acs.jpcb.7b04727

    Article  CAS  PubMed  Google Scholar 

  16. Otsuki J (2010) STM studies on porphyrins. Coord Chem Rev 254:2311–2341. https://doi.org/10.1016/j.ccr.2009.12.038

    Article  CAS  Google Scholar 

  17. Huang H, Wong SL, Chen W, Wee ATS (2011) LT-STM studies on substrate-dependent self-assembly of small organic molecules. J Phys D Appl Phys 44:464005. https://doi.org/10.1088/0022-3727/44/46/464005

    Article  CAS  Google Scholar 

  18. Niu T, Li A (2013) Exploring single molecules by scanning probe microscopy: porphyrin and phthalocyanine. J Phys Chem Lett 4:4095–4102. https://doi.org/10.1021/jz402080f

    Article  CAS  Google Scholar 

  19. Bedioui F (1995) Zeolite-encapsulated and clay-intercalated metal porphyrin, phthalocyanine and Schiff-base complexes as models for biomimetic oxidation catalysts: an overview. Coord Chem Rev 144:39–68. https://doi.org/10.1016/0010-8545(94)08000-H

    Article  CAS  Google Scholar 

  20. Thomas JK (1993) Physical aspects of photochemistry and radiation chemistry of molecules adsorbed on silica, .gamma.-alumina, zeolites, and clays. Chem Rev 93:301–320. https://doi.org/10.1021/cr00017a014

    Article  CAS  Google Scholar 

  21. Constantino VRL, Barbosa CAS, Bizeto MA, Dias PM (2000) Intercalation compounds involving inorganic layered structures. An Acad Bras Cienc 72:45–49

    Article  CAS  Google Scholar 

  22. Torres A, Amaya Suárez J, Remesal E et al (2018) Adsorption of prototypical asphaltenes on silica: first-principles DFT simulations including dispersion corrections. J Phys Chem B 122:618–624. https://doi.org/10.1021/acs.jpcb.7b05188

    Article  CAS  PubMed  Google Scholar 

  23. Takagi S, Eguchi M, Tryk DA, Inoue H (2006) Light-harvesting energy transfer and subsequent electron transfer of cationic porphyrin complexes on clay surfaces. Langmuir 22:1406–1408. https://doi.org/10.1021/la052911y

    Article  CAS  PubMed  Google Scholar 

  24. Ohtani Y, Shimada T, Takagi S (2015) Artificial light-harvesting system with energy migration functionality in a cationic dye/inorganic nanosheet complex. J Phys Chem C 119:18896–18902. https://doi.org/10.1021/acs.jpcc.5b04578

    Article  CAS  Google Scholar 

  25. Brennan BJ, Liddell PA, Moore TA et al (2013) Hole mobility in porphyrin- and porphyrin-fullerene electropolymers. J Phys Chem B 117:426–432. https://doi.org/10.1021/jp3099945

    Article  CAS  PubMed  Google Scholar 

  26. Hasobe T, Kamat PV, Absalom MA et al (2004) Supramolecular photovoltaic cells based on composite molecular nanoclusters: dendritic porphyrin and C 60 , porphyrin dimer and C 60 , and porphyrin−C 60 dyad. J Phys Chem B 108:12865–12872. https://doi.org/10.1021/jp048404r

    Article  CAS  Google Scholar 

  27. Ohta K, Tokonami S, Takahashi K et al (2017) Probing charge carrier dynamics in porphyrin-based organic semiconductor thin films by time-resolved THz spectroscopy. J Phys Chem B 121:10157–10165. https://doi.org/10.1021/acs.jpcb.7b07025

    Article  CAS  PubMed  Google Scholar 

  28. Aguzzi C, Cerezo P, Viseras C, Caramella C (2007) Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci 36:22–36. https://doi.org/10.1016/j.clay.2006.06.015

    Article  CAS  Google Scholar 

  29. Lin W, Hu Q, Jiang K et al (2016) A porphyrin-based metal–organic framework as a pH-responsive drug carrier. J Solid State Chem 237:307–312. https://doi.org/10.1016/j.jssc.2016.02.040

    Article  CAS  Google Scholar 

  30. Weiss C, Kobayashi H, Gouterman M (1965) Spectra of porphyrins. J Mol Spectrosc 16:415–450. https://doi.org/10.1016/0022-2852(65)90132-3

    Article  CAS  Google Scholar 

  31. Jaramillo P, Coutinho K, Cabral BJC, Canuto S (2011) Explicit solvent effects on the visible absorption spectrum of a photosynthetic pigment: chlorophyll-c2 in methanol. Chem Phys Lett 516:250–253. https://doi.org/10.1016/j.cplett.2011.10.016

    Article  CAS  Google Scholar 

  32. Kohn W, Sham LJJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  33. Hohenberg P, Kohn W (1964) Inhomogeneous Electron gas. Phys Rev 136:B864–B871. https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  34. Ullrich CA, Yang Z (2014) A brief compendium of time-dependent density functional theory. Braz J Phys 44:154–188. https://doi.org/10.1007/s13538-013-0141-2

    Article  Google Scholar 

  35. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  36. Improta R, Ferrante C, Bozio R, Barone V (2009) The polarizability in solution of tetra-phenyl-porphyrin derivatives in their excited electronic states: a PCM/TD-DFT study. Phys Chem Chem Phys 11:4664–4673. https://doi.org/10.1039/b902521a

    Article  CAS  PubMed  Google Scholar 

  37. Mazzone G, Russo N, Sicilia E (2013) Theoretical investigation of the absorption spectra and singlet-triplet energy gap of positively charged tetraphenylporphyrins as potential photodynamic therapy photosensitizers. Can J Chem 91:902–906. https://doi.org/10.1139/cjc-2012-0449

    Article  CAS  Google Scholar 

  38. Krawczyk P (2015) Time-dependent density functional theory calculations of the solvatochromism of some azo sulfonamide fluorochromes. J Mol Model 21:118. https://doi.org/10.1007/s00894-015-2651-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. El Mahdy AM, Halim SA, Taha HO (2018) DFT and TD-DFT calculations of metallotetraphenylporphyrin and metallotetraphenylporphyrin fullerene complexes as potential dye sensitizers for solar cells. J Mol Struct 1160:415–427. https://doi.org/10.1016/j.molstruc.2018.02.041

    Article  CAS  Google Scholar 

  40. De Simone BC, Mazzone G, Russo N et al (2018) Excitation energies, singlet–triplet energy gaps, spin–orbit matrix elements and heavy atom effects in BOIMPYs as possible photosensitizers for photodynamic therapy: a computational investigation. Phys Chem Chem Phys 20:2656–2661. https://doi.org/10.1039/C7CP06763A

    Article  PubMed  Google Scholar 

  41. Dulski M, Kempa M, Kozub P et al (2013) DFT/TD-DFT study of solvent effect as well the substituents influence on the different features of TPP derivatives for PDT application. Spectrochim Acta A Mol Biomol Spectrosc 104:315–327. https://doi.org/10.1016/j.saa.2012.11.072

    Article  CAS  PubMed  Google Scholar 

  42. Presselt M, Wojdyr M, Beenken WJD et al (2014) Steric and electronic contributions to the core reactivity of monoprotonated 5-phenylporphyrin: a DFT study. Chem Phys Lett 603:21–27. https://doi.org/10.1016/j.cplett.2014.04.011

    Article  CAS  Google Scholar 

  43. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  44. Fujimura T, Ramasamy E, Ishida Y et al (2016) Sequential energy and electron transfer in a three-component system aligned on a clay nanosheet. Phys Chem Chem Phys 18:5404–5411. https://doi.org/10.1039/C5CP06984J

    Article  CAS  PubMed  Google Scholar 

  45. Dias PM, De Faria DLA, Constantino VRL (2000) Spectroscopic studies on the interaction of tetramethylpyridylporphyrins and cationic clays. J Incl Phenom Macrocycl Chem 38:251–266. https://doi.org/10.1023/A:1008173315471

    Article  CAS  Google Scholar 

  46. Dias PM, de Faria DLA, Leopoldo Constantino VR (2005) Clay-porphyrin systems: spectroscopic evidence of TMPyP protonation, non-planar distortion and meso substituent rotation. Clay Clay Miner 53:361–371. https://doi.org/10.1346/CCMN.2005.0530404

    Article  CAS  Google Scholar 

  47. Ishida Y, Masui D, Shimada T et al (2012) The mechanism of the porphyrin spectral shift on inorganic nanosheets: the molecular flattening induced by the strong host–guest interaction due to the “size-matching rule”. J Phys Chem C 116:7879–7885. https://doi.org/10.1021/jp300842f

    Article  CAS  Google Scholar 

  48. Chernia Z, Gill D (1999) Flattening of TMPyP adsorbed on laponite. Evidence in observed and calculated UV−Vis spectra. Langmuir 15:1625–1633. https://doi.org/10.1021/la9803676

    Article  CAS  Google Scholar 

  49. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Rev A.1. Gaussian, Inc, Wallingford

    Google Scholar 

  50. Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11:361–373. https://doi.org/10.1002/jcc.540110311

    Article  CAS  Google Scholar 

  51. O’boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845. https://doi.org/10.1002/jcc.20823

    Article  CAS  PubMed  Google Scholar 

  52. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  53. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  54. Cohen AJ, Handy NC (2001) Dynamic correlation. Mol Phys 99:607–615

    Article  CAS  Google Scholar 

  55. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158. https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  56. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372. https://doi.org/10.1063/1.464304

    Article  CAS  Google Scholar 

  57. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620. https://doi.org/10.1039/b810189b

    Article  CAS  PubMed  Google Scholar 

  58. Hertwig RH, Koch W (1997) On the parameterization of the local correlation functional. What is Becke-3-LYP? Chem Phys Lett 268:345–351. https://doi.org/10.1016/S0009-2614(97)00207-8

    Article  CAS  Google Scholar 

  59. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  60. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  61. Perdew JP, Burke K, Ernzerhof M (1997) Erratum: generalized gradient approximation made simple (physical review letters (1996) 77 (3865)). Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  62. Véras LMC, Cunha VRR, Lima FCDA et al (2013) Industrial scale isolation, structural and spectroscopic characterization of epiisopiloturine from Pilocarpus microphyllus Stapf leaves: a promising alkaloid against schistosomiasis. PLoS One 8:e66702. https://doi.org/10.1371/journal.pone.0066702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Portes MC, De Moraes J, Véras LMC et al (2016) Structural and spectroscopic characterization of epiisopiloturine-metal complexes, and anthelmintic activity vs. S mansoni. J Coord Chem 69:1663–1683. https://doi.org/10.1080/00958972.2016.1182162

    Article  CAS  Google Scholar 

  64. Lileev AS, Loginova DV, Lyashchenko AK (2007) Dielectric properties of aqueous hydrochloric acid solutions. Mendeleev Commun 17:364–365. https://doi.org/10.1016/j.mencom.2007.11.024

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The calculations used the computational resources provided by the HPC-USP/Rice agreement and the cluster funded by FAPESP. The authors also acknowledge the computational time provided by the CENAPAD/SP.

Funding

The authors thank the financial support provided by the INCT-INEO, CNPq and FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipe Camargo Dalmatti Alves Lima.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 7432 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suarez, E.D., Lima, F.C.D.A., Dias, P.M. et al. Theoretical UV-Vis spectra of tetracationic porphyrin: effects of environment on electronic spectral properties. J Mol Model 25, 264 (2019). https://doi.org/10.1007/s00894-019-4149-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4149-6

Keywords

Navigation