Skip to main content
Log in

A comprehensive study on crystal structure of a novel sulfonamide-dihydroquinolinone through experimental and theoretical approaches

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Quinolinones and sulfonamides are moieties with biological potential that can be linked to form new hybrid compounds with improved potential. However, there are few hybrids of these molecules reported. In this sense, this work presents a structural description of a new sulfonamide-dihydroquinolinone (E)-2-(2-methoxyphenyl)-3-(3-nitrobenzylidene)-1-(phenylsulfonyl)-2,3 dihydroquinolin-4(1H)-one (DHQ). The molecular structure of DHQ was elucidated by X-ray diffraction, nuclear magnetic resonance and infrared spectroscopy, and both molecular packing and intermolecular interactions were analyzed by Hirshfeld surfaces and fingerprint maps. In addition, theoretical calculations on frontier orbitals, molecular electrostatic potential maps, and assignments were performed. The crystal packing of DHQ was found to be stabilized by a dimer through a weak C–H⋯O interaction along the c axis. Moreover, the structure is stabilized mainly by C–H⋯O and C–H⋯π interactions, since the interaction C25–H25⋯π contributes to a chain formation. The Hirshfeld normalized surface shows that the closest interactions are around the atoms linked to the dimer formation. The calculations indicate that DHQ possesses electrophilic sites near O atoms and depleted electrons around the H atoms. There is a band GAP of 3.29 eV between its frontier orbitals, which indicates that DHQ is more reactive than other analogues published.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Viegas-Junior C, Danuello A, da Silva Bolzani V et al (2007) Molecular hybridization: a useful tool in the design of new drug prototypes. Curr Med Chem 14:1829–1852. https://doi.org/10.2174/092986707781058805

    Article  CAS  PubMed  Google Scholar 

  2. Walsh J, Bell A (2009) Hybrid drugs for malaria. Curr Pharm Des 15:2970–2985. https://doi.org/10.2174/138161209789058183

    Article  CAS  PubMed  Google Scholar 

  3. Guantai EM, Ncokazi K, Egan TJ et al (2010) Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds. Bioorg Med Chem 18:8243–8256. https://doi.org/10.1016/J.BMC.2010.10.009

    Article  CAS  PubMed  Google Scholar 

  4. Lazar C, Kluczyk A, Kiyota T, Konishi Y (2004) Drug evolution concept in drug design: 1. Hybridization method. J Med Chem. https://doi.org/10.1021/JM049637+

  5. Singh P, Raj R, Kumar V et al (2012) 1,2,3-Triazole tethered β-lactam-Chalcone bifunctional hybrids: synthesis and anticancer evaluation. Eur J Med Chem 47:594–600. https://doi.org/10.1016/J.EJMECH.2011.10.033

    Article  CAS  PubMed  Google Scholar 

  6. Lacerda RB, de Lima CKF, da Silva LL et al (2009) Discovery of novel analgesic and anti-inflammatory 3-arylamine-imidazo[1,2-a]pyridine symbiotic prototypes. Bioorg Med Chem 17:74–84. https://doi.org/10.1016/J.BMC.2008.11.018

    Article  CAS  PubMed  Google Scholar 

  7. Domínguez JN, León C, Rodrigues J et al (2005) Synthesis and antimalarial activity of sulfonamide chalcone derivatives. Farmaco 60:307–311. https://doi.org/10.1016/j.farmac.2005.01.005

    Article  CAS  PubMed  Google Scholar 

  8. Kobkeatthawin T, Chantrapromma S, Chidan Kumar CS, Fun H-K (2015) Synthesis, characterization, and crystal structure of sulfonamide chalcone: (E)-4-methoxy-N-(4-(3-(3,4,5-trimethoxyphenyl)acryloyl)phenyl)-benzenesulfonamide. Crystallogr Rep 60:1058–1064. https://doi.org/10.1134/S1063774515070135

    Article  CAS  Google Scholar 

  9. Seo WD, Kim JH, Kang JE et al (2005) Sulfonamide chalcone as a new class of α-glucosidase inhibitors. Bioorg Med Chem Lett 15:5514–5516. https://doi.org/10.1016/j.bmcl.2005.08.087

    Article  CAS  PubMed  Google Scholar 

  10. Tashima T (2015) The structural use of carbostyril in physiologically active substances. Bioorg Med Chem Lett 25:3415–3419. https://doi.org/10.1016/j.bmcl.2015.06.027

    Article  CAS  PubMed  Google Scholar 

  11. Charushin VN, Mochulskaya NN, Antipin FV et al (2018) Synthesis and antimycobacterial evaluation of new (2-oxo-2H-chromen-3-yl) substituted fluoroquinolones. J Fluor Chem 208:15–23. https://doi.org/10.1016/j.jfluchem.2018.01.007

    Article  CAS  Google Scholar 

  12. Tashima T, Murata H, Kodama H (2014) Design and synthesis of novel and highly-active pan-histone deacetylase (pan-HDAC) inhibitors. Bioorg Med Chem 22:3720–3731. https://doi.org/10.1016/j.bmc.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  13. Savanur HM, Pawashe GM, Kim KM, Kalkhambkar RG (2018) Synthesis and molecular modeling studies of Coumarin- and 1-Aza-Coumarin-linked miconazole analogues and their antifungal activity. ChemistrySelect 3:9648–9653. https://doi.org/10.1002/slct.201801408

    Article  CAS  Google Scholar 

  14. O’Brien NJ, Brzozowski M, Wilson DJD et al (2014) Synthesis and biological evaluation of substituted 3-anilino-quinolin-2(1H)-ones as PDK1 inhibitors. Bioorg Med Chem 22:3781–3790. https://doi.org/10.1016/J.BMC.2014.04.037

    Article  PubMed  Google Scholar 

  15. Kraus JM, Tatipaka HB, McGuffin SA et al (2010) Second generation analogues of the Cancer drug clinical candidate Tipifarnib for anti-Chagas disease drug discovery. J Med Chem 53:3887–3898. https://doi.org/10.1021/jm9013136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nqoro X, Tobeka N, Aderibigbe B et al (2017) Quinoline-based hybrid compounds with antimalarial activity. Molecules 22:2268. https://doi.org/10.3390/molecules22122268

    Article  CAS  PubMed Central  Google Scholar 

  17. Custodio JMF, Michelini LJ, de Castro MRC et al (2018) Structural insights into a novel anticancer sulfonamide chalcone. New J Chem 42:3426–3434. https://doi.org/10.1039/C7NJ03523C

    Article  CAS  Google Scholar 

  18. Lee B, Kang W, Shon J et al (2014) Potential of 4′-(p-toluenesulfonylamide)-4-hydroxychalcone to inhibit the human cytochrome P450 2J2 isoform. J Korean Soc Appl Biol Chem 57:31–34. https://doi.org/10.1007/s13765-013-4307-y

    Article  CAS  Google Scholar 

  19. Stoob K, Singer HP, Mueller SR et al (2007) Dissipation and transport of veterinary sulfonamide antibiotics after manure application to grassland in a small catchment. Environ Sci Technol. doi: https://doi.org/10.1021/ES070840E

  20. Beaver KA, Siegmund AC, Spear KL (1996) Application of the sulfonamide functional group as an anchor for solid phase organic synthesis (SPOS). Tetrahedron Lett 37:1145–1148. https://doi.org/10.1016/0040-4039(95)02418-2

    Article  CAS  Google Scholar 

  21. Gryzło B, Kulig K (2014) Quinoline – a promising fragment in the search for new Antimalarials. Mini Rev Med Chem 14:332–344. https://doi.org/10.2174/1389557514666140220123226

    Article  CAS  PubMed  Google Scholar 

  22. Sunduru N, Srivastava K, Rajakumar S et al (2009) Synthesis of novel thiourea, thiazolidinedione and thioparabanic acid derivatives of 4-aminoquinoline as potent antimalarials. Bioorg Med Chem Lett 19:2570–2573. https://doi.org/10.1016/j.bmcl.2009.03.026

    Article  CAS  PubMed  Google Scholar 

  23. Ghorab MM, Ragab FA, Hamed MM (2009) Design, synthesis and anticancer evaluation of novel tetrahydroquinoline derivatives containing sulfonamide moiety. Eur. J Med Chem 44:4211–4217. https://doi.org/10.1016/J.EJMECH.2009.05.017

    Article  CAS  PubMed  Google Scholar 

  24. Yurttaş L, Çiftçi GA (2018) New Quinoline based sulfonamide derivatives: cytotoxic and apoptotic activity evaluation against pancreatic Cancer cells. Anti Cancer Agents Med Chem 18:1122–1130. https://doi.org/10.2174/1871520618666180307142629

    Article  CAS  Google Scholar 

  25. Alqasoumi SI, Al-Taweel AM, Alafeefy AM et al (2010) Novel quinolines and pyrimido[4,5-b]quinolines bearing biologically active sulfonamide moiety as a new class of antitumor agents. Eur. J Med Chem 45:738–744. https://doi.org/10.1016/J.EJMECH.2009.11.021

    Article  CAS  PubMed  Google Scholar 

  26. Zajdel P, Marciniec K, Maślankiewicz A et al (2012) Quinoline- and isoquinoline-sulfonamide derivatives of LCAP as potent CNS multi-receptor—5-HT1A/5-HT2A/5-HT7 and D2/D3/D4—agents: the synthesis and pharmacological evaluation. Bioorg Med Chem 20:1545–1556. https://doi.org/10.1016/J.BMC.2011.12.039

    Article  CAS  PubMed  Google Scholar 

  27. Kim JH, Ryu HW, Shim JH et al (2009) Development of new and selective Trypanosoma cruzi trans-sialidase inhibitors from sulfonamide chalcones and their derivatives. ChemBioChem 10:2475–2479. https://doi.org/10.1002/cbic.200900108

    Article  CAS  PubMed  Google Scholar 

  28. Ahmed NS, Badahdah KO, Qassar HM (2017) Novel quinoline bearing sulfonamide derivatives and their cytotoxic activity against MCF7 cell line. Med Chem Res 26:1201–1212. https://doi.org/10.1007/s00044-017-1850-9

    Article  CAS  Google Scholar 

  29. Afzal O, Kumar S, Haider MR et al (2015) A review on anticancer potential of bioactive heterocycle quinoline. Eur. J Med Chem 97:871–910. https://doi.org/10.1016/J.EJMECH.2014.07.044

    Article  CAS  PubMed  Google Scholar 

  30. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge structural database. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:171–179. https://doi.org/10.1107/S2052520616003954

    Article  CAS  Google Scholar 

  31. Wang HM, Zhang L, Liu J et al (2015) Synthesis and anti-cancer activity evaluation of novel prenylated and geranylated chalcone natural products and their analogs. Eur J Med Chem 92:439–448. https://doi.org/10.1016/j.ejmech.2015.01.007

    Article  CAS  PubMed  Google Scholar 

  32. de Castro MRC, Aragão ÂQ, Da Silva CC et al (2016) Conformational variability in sulfonamide chalcone hybrids: crystal structure and cytotoxicity. J Braz Chem Soc 27:884–898. https://doi.org/10.5935/0103-5053.20150341

    Article  CAS  Google Scholar 

  33. Custodio JMF, D’Oliveira GDC, Gotardo F et al (2019) Chalcone as potential nonlinear optical material: a combined theoretical, structural, and spectroscopic study. J Phys Chem C 123:5931–5941. https://doi.org/10.1021/acs.jpcc.9b01063

    Article  CAS  Google Scholar 

  34. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122. https://doi.org/10.1107/S0108767307043930

    Article  CAS  PubMed  Google Scholar 

  35. Turner MJ, McKinnon JJ, Wolff SK et al (2017) CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net

  36. McKinnon JJ, Jayatilaka D, Spackman MA (2007) Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem Commun 68:3814. https://doi.org/10.1039/b704980c

    Article  CAS  Google Scholar 

  37. McKinnon JJ, Spackman MA, Mitchell AS (2004) Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr Sect B Struct Sci 60:627–668. https://doi.org/10.1107/S0108768104020300

    Article  CAS  Google Scholar 

  38. Koenderink JJ, van Doorn AJ (1992) Surface shape and curvature scales. Image Vis Comput 10:557–564. https://doi.org/10.1016/0262-8856(92)90076-F

    Article  Google Scholar 

  39. Spackman MA, McKinnon JJ (2002) Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 4:378–392. https://doi.org/10.1039/B203191B

    Article  CAS  Google Scholar 

  40. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  41. Merrick JP, Moran D, Radom L (2007) An evaluation of harmonic vibrational frequency scale factors. J Phys Chem A 111:11683–11700. https://doi.org/10.1021/jp073974n

    Article  CAS  PubMed  Google Scholar 

  42. Foresman JB, Frisch AE (1996) Exploring chemistry with electronic structure methods, Segunda. Gaussian, Inc, Pittsburgh

    Google Scholar 

  43. Buczek A, Kupka T, Broda MA, Żyła A (2016) Predicting the structure and vibrational frequencies of ethylene using harmonic and anharmonic approaches at the Kohn–sham complete basis set limit. J Mol Model 22:42. https://doi.org/10.1007/s00894-015-2902-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jamroz MH (2004) Vibrational energy distribution analysis VEDA 4, Warsaw. http://smmg.pl/index.php/software/sowtware-veda.html

  45. Dennington R, Keith T, Millam J (2009) GaussView, Version 5. Semichem Inc., Shawnee Mission

  46. Bruno IJ, Cole JC, Kessler M et al (2004) Retrieval of Crystallographically-derived molecular geometry information. J Chem Inf Comput Sci 44:2133–2144. https://doi.org/10.1021/ci049780b

    Article  CAS  PubMed  Google Scholar 

  47. Macrae CF, Bruno IJ, Chisholm JA et al (2008) Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470. https://doi.org/10.1107/S0021889807067908

    Article  CAS  Google Scholar 

  48. Spek AL (2010) THE PLATON CRYSTALLOGRAPHIC PACKAGE DOCUMENTATION - VERSION 29-09-2010 overview of THE content of this document chapter 0 – general introduction to the PLATON package. Acta Crystallogr D65:148–155

    Google Scholar 

  49. Karabacak M, Çınar M, Çoruh A, Kurt M (2009) Theoretical investigation on the molecular structure, infrared, Raman and NMR spectra of Para-halogen benzenesulfonamides, 4-X-C6H4SO2NH2 (X=Cl, Br or F). J Mol Struct 919:26–33. https://doi.org/10.1016/j.molstruc.2008.08.007

    Article  CAS  Google Scholar 

  50. Pavia DL, Lampman GM, Kriz GS, Vyvyan JA (2015) Introduction to spectroscopy, 5th edn. Cengage learning, Mason

    Google Scholar 

  51. Panicker CY, Varghese HT, John MA, Harikumar B (2008) IR, Raman and ab-initio calcualtions of 2 , 6-dimethoxyphenol. Orient J Chem 24:973–976

    CAS  Google Scholar 

  52. Raja B, Balachandran V, Revathi B, Anitha K (2018) Molecular structure, vibrational spectroscopic, natural bond orbital analysis, frontier molecular orbital analysis and thermodynamic properties of N-tert-butoxy carbonyl-L-phenylalanine by DFT methods. Mater Res Innov. https://doi.org/10.1080/14328917.2018.1477544

  53. Pearson RG (1986) Absolute electronegativity and hardness correlated with molecular orbital theory. Proc Natl Acad Sci U S A 83:8440–8441. https://doi.org/10.1073/pnas.83.22.8440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Oliveira SS, Santin LG, Almeida LR et al (2017) Synthesis, characterization, and computational study of the supramolecular arrangement of a novel cinnamic acid derivative. J Mol Model 23:35. https://doi.org/10.1007/s00894-016-3203-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support of Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). This research was developed with support of the High Performance Computing Center of Universidade Estadual de Goiás (UEG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. F. Custódio.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, C.A., Custódio, J.M.F., Vaz, W.F. et al. A comprehensive study on crystal structure of a novel sulfonamide-dihydroquinolinone through experimental and theoretical approaches. J Mol Model 25, 205 (2019). https://doi.org/10.1007/s00894-019-4091-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4091-7

Keywords

Navigation