Skip to main content
Log in

Synthesis, characterization, and computational study of the supramolecular arrangement of a novel cinnamic acid derivative

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, we present the synthesis, characterization, and computational study of the supramolecular arrangement of a new cinnamic acid derivative: ethyl-(2E)-3-(4-hydroxy-3,5-dimethoxyphenyl)-prop-2-enoate (EHD). Single crystals of EHD were obtained using ethyl ether as solvent and a slow evaporation technique. Its crystallographic structure, derived from X-ray diffraction experiments, includes a disordered water molecule on the EHD supramolecular structure. This water molecule participates in four O–H···O hydrogen bonds, which are arranged as a centrosymmetric H-bond array with the water at the center. Electronic and structural properties of the isolated EHD molecule and of the EHD molecule in the presence of one water molecule were calculated at the B3LYP/6-311++G(2d,2p) level of theory. These calculations show that the HOMO–LUMO energy gap of EHD decreases upon the introduction of the water molecule, suggesting that EHD becomes a stronger electron acceptor. These results indicate that the water molecule helps to stabilize the crystal structure in this system containing unequal numbers of acceptor and donor atoms. The supramolecular synthon involving the disordered water molecule and the supramolecular features presented here provide new possibilities in the design of functional materials and should also help us to gain a deeper understanding of the processes by which molecules recognize biological targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Narasimhan B, Belsare D, Pharande D, Mourya V, Dhake A (2004) Esters, amides and substituted derivatives of cinnamic acid: synthesis, antimicrobial activity and QSAR investigations. Eur J Med Chem 39(10):827–834. doi:10.1016/j.ejmech.2004.06.013

    Article  CAS  Google Scholar 

  2. Zhu J, Zhu H, Kobamoto N, Yasuda M, Tawata S (2000) Fungitoxic and phytotoxic activities of cinnamic acid esters and amides. J Pestic Sci 25(3):263–266

    Article  CAS  Google Scholar 

  3. Adisakwattana S, Sookkongwaree K, Roengsumran S, Petsom A, Ngamrojnavanich N, Chavasiri W, Deesamer S, Yibchok-Anun S (2004) Structure–activity relationships of trans-cinnamic acid derivatives on alpha-glucosidase inhibition. Bioorg Med Chem Lett 14(11):2893–2896. doi:10.1016/j.bmcl.2004.03.037

  4. Li K, Foresee LN, Tunge JA (2005) Trifluoroacetic acid-mediated hydroarylation: synthesis of dihydrocoumarins and dihydroquinolones. J Org Chem 70(7):2881–2883. doi:10.1021/jo0477650

  5. Wang MX (2016) Supramolecular chemistry: defined. Supramol Chem 28(1–2):1–3. doi:10.1080/10610278.2015.1059021

    Article  CAS  Google Scholar 

  6. Steed JW, Atwood JL, Gale PA (2012) Definition and emergence of supramolecular chemistry. In: Supramolecular chemistry. Wiley, Chichester. doi:10.1002/9780470661345.smc002

  7. Steed JW, Atwood JL (2009) Supramolecular chemistry, 2nd edn. Wiley, Chichester

  8. Adisakwattana S, Pongsuwan J, Wungcharoen C, Yibchok-anun S (2013) In vitro effects of cinnamic acid derivatives on protein tyrosine phosphatase 1B. J Enzym Inhib Med Ch 28(5):1067–1072. doi:10.3109/14756366.2012.715286

    Article  CAS  Google Scholar 

  9. Adisakwattana S, Chantarasinlapin P, Thammarat H, Yibchok-Anun S (2009) A series of cinnamic acid derivatives and their inhibitory activity on intestinal alpha-glucosidase. J Enzym Inhib Med Ch 24(5):1194–1200. doi:10.1080/14756360902779326

    Article  CAS  Google Scholar 

  10. Sova M (2012) Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini-Rev Med Chem 12(8):749–767

  11. Guzman JD (2014) Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules 19(12):19292–19349. doi:10.3390/molecules191219292

  12. Simonyan A (1993) Activity of cinnamic acid derivatives and new methods for their synthesis (review). Pharm Chem J 27(2):92–100

    Article  Google Scholar 

  13. Aoki S, Amamoto C, Oyamada J, Kitamura T (2005) A convenient synthesis of dihydrocoumarins from phenols and cinnamic acid derivatives. Tetrahedron 61(39):9291–9297. doi:10.1016/j.tet.2005.07.062

    Article  CAS  Google Scholar 

  14. Qian HF, Huang W (2005) Molecular and crystal structures of two matrices for MALDI-TOF-MS: 2-(4-hydroxyphenylazo)benzoic acid and 3,5-dimethoxy-4-hydroxycinnamic acid. J Mol Struct 743(1–3):191–195. doi:10.1016/j.molstruc.2005.03.001

    Article  CAS  Google Scholar 

  15. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136(3b):B864. doi:10.1103/PhysRev.136.B864

  16. Kohn W, Sham LJ, Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4a):1133. doi:10.1103/PhysRev.140.A1133

  17. Altomare A, Cascarano G, Giacovazzo C, Guagliardi A, Burla MC, Polidori GT, Camalli M (1994) SIRPOW. 92–a program for automatic solution of crystal structures by direct methods optimized for powder data. J Appl Crystallogr 27(3):435–436

  18. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122. doi:10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  19. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C 71:3–8. doi:10.1107/S2053229614024218

    Article  Google Scholar 

  20. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. Crystengcomm 11(1):19–32. doi:10.1039/b818330a

    Article  CAS  Google Scholar 

  21. McKinnon JJ, Jayatilaka D, Spackman MA (2007) Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem Commun 37:3814–3816. doi:10.1039/b704980c

    Article  Google Scholar 

  22. Spackman MA, McKinnon JJ (2002) Fingerprinting intermolecular interactions in molecular crystals. Crystengcomm 4:378–392. doi:10.1039/b203191b

    Article  CAS  Google Scholar 

  23. Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Spackman PR, Jayatilaka D, Spackman MA (2005–2016) CrystalExplorer 3.3. The University of Western Australia, Crawley

  24. McKinnon JJ, Spackman MA, Mitchell AS (2004) Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr Sect B 60(6):627–668

  25. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, revision E.01. Gaussian, Inc., Wallingford

  26. Sjoberg P, Politzer P (1990) Use of the electrostatic potential at the molecular-surface to interpret and predict nucleophilic processes. J Phys Chem 94(10):3959–3961. doi:10.1021/j100373a017

  27. Politzer P, Murray JS (2002) The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor Chem Acc 108(3):134–142. doi:10.1007/s00214-002-0363-9

    Article  CAS  Google Scholar 

  28. Dennington R, Keith T, Millam J, Eppinnett K, Hovell WL, Gilliland R (2009) GaussView. Semichem Inc., Shawnee Mission

  29. Bondi A (1964) Van der Waals volumes + radii. J Phys Chem 68(3):441. doi:10.1021/j100785a001

  30. Farrugia LJ (2012) WinGX and ORTEP for Windows: an update. J Appl Crystallogr 45:849–854. doi:10.1107/S0021889812029111

    Article  CAS  Google Scholar 

  31. Castro AN, Almeida LR, Anjos MM, Oliveira GR, Napolitano HB, Valverde C, Baseia B (2016) Theoretical study on the third-order nonlinear optical properties and structural characterization of 3-acetyl-6-bromocoumarin. Chem Phys Lett 653:122–130. doi:10.1016/j.cplett.2016.04.070

  32. Shishkin OV, Zubatyuk RI, Shishkina SV, Dyakonenko VV, Medviediev VV (2014) Role of supramolecular synthons in the formation of the supramolecular architecture of molecular crystals revisited from an energetic viewpoint. Phys Chem Chem Phys 16(14):6773–6786. doi:10.1039/c3cp55390f

    Article  CAS  Google Scholar 

  33. Ternavisk RR, Camargo AJ, Machado FBC, Rocco JAFF, Aquino GLB, Silva VHC, Napolitano HB (2014) Synthesis, characterization, and computational study of a new dimethoxy-chalcone. J Mol Model 20(12):2526. doi:10.1007/s00894-014-2526-8

    Article  Google Scholar 

  34. Fukui K (1982) Role of frontier orbitals in chemical reactions. Science 218(4574):747–754. doi:10.1126/science.218.4574.747

  35. Fukui K, Yonezawa T, Shingu H (1952) A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys 20(4):722–725. doi:10.1063/1.1700523

  36. Carvalho PS, Almeida LR, Neto JHA, Medina ACQD, Menezes ACS, Sousa JF, Oliveira SS, Camargo AJ, Napolitano HB (2016) Structural and theoretical investigation of anhydrous 3,4,5-triacetoxybenzoic acid. Plos One 11(6). doi:10.1371/journal.pone.0158029

  37. Rangel FC, Mamiya AA, de Oliveira HC, Vieira FM, Mundim KC (2013) Alternative approach to calculate two-center overlap matrix through deformed exponential function. J Phys Chem A 117(30):6622–6628

    Article  CAS  Google Scholar 

  38. Parr RG, Pearson RG (1983) Absolute hardness—companion parameter to absolute electronegativity. J Am Chem Soc 105(26):7512–7516. doi:10.1021/ja00364a005

  39. Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1(1):104–113

    Article  Google Scholar 

  40. Dewar MJS (1952) A molecular orbital theory of organic chemistry. I. General principles. J Am Chem Soc 74(13):3341–3345. doi:10.1021/ja01133a038

  41. Fukui K, Fujimoto H (1968) An MO-theoretical interpretation of the nature of chemical reactions. I. Partitioning analysis of the interaction energy. Bull Chem Soc Jpn 41(9):1989–1997

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Council of Technological and Scientific Development (CNPq), Brazil. The authors are also grateful to Prof. Robert Burrow at the Chemistry Department of the Federal University of Santa Maria (UFSM) for data collection and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. B. Napolitano.

Additional information

This paper belongs to Topical Collection Brazilian Symposium of Theoretical Chemistry (SBQT2015)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, S.S., Santin, L.G., Almeida, L.R. et al. Synthesis, characterization, and computational study of the supramolecular arrangement of a novel cinnamic acid derivative. J Mol Model 23, 35 (2017). https://doi.org/10.1007/s00894-016-3203-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3203-x

Keywords

Navigation