Skip to main content
Log in

Lanthanide complex coordination polyhedron geometry prediction accuracies of ab initio effective core potential calculations

  • Original paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The ability to efficiently and accurately predict solid-state geometries of lanthanide coordination compounds efficiently and accurately is central for the design of new ligands capable of forming stable and highly luminescent complexes. Accordingly, we present in this paper a report on the capability of various ab initio effective core potential calculations in reproducing the coordination polyhedron geometries of lanthanide complexes. Starting with all combinations of HF, B3LYP and MP2(Full) with STO-3G, 3-21G, 6-31G, 6-31G* and 6-31+G basis sets for [Eu(H2O)9]3+ and closing with more manageable calculations for the larger complexes, we computed the fully predicted ab initio geometries for a total of 80 calculations on 52 complexes of Sm(III), Eu(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III) and Tm(III), the largest containing 164 atoms. Our results indicate that RHF/STO-3G/ECP appears to be the most efficient model chemistry in terms of coordination polyhedron crystallographic geometry predictions from isolated lanthanide complex ion calculations. Moreover, both augmenting the basis set and/or including electron correlation generally enlarged the deviations and aggravated the quality of the predicted coordination polyhedron crystallographic geometry. Our results further indicate that Cosentino et al.’s suggestion of using RHF/3-21G/ECP geometries appears to be indeed a more robust, but not necessarily, more accurate recommendation to be adopted for the general lanthanide complex case.

Graphical visualization of unsigned mean errors, UME(Eu-L)s, involving only the interatomic distances between the europium central ion and the oxygen atoms of the coordination polyhedron of the cation nona-aqua-europium(III) for various model chemistries, all compared to the “Cambridge Structural Database 2004” crystallographic geometry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Lehn J-M (1990) Angew Chem Int Ed Engl 29:1304–1309

    Article  Google Scholar 

  2. Kido J, Okamoto Y (2002) Chem Rev 102:2357–2368

    Article  PubMed  CAS  Google Scholar 

  3. Malta OL (1982) Chem Phys Lett 87:27–29

    Article  CAS  Google Scholar 

  4. Malta OL (1982) Chem Phys Lett 88:353–356

    Article  CAS  Google Scholar 

  5. de Sa GF, Malta OL, Donega CD, Simas AM, Longo RL, Santa-Cruz PA, da Silva EF (2000) Coord Chem Rev 196:165–195

    Article  Google Scholar 

  6. Faustino WM, Rocha GB, Gonçalves e Silva FR, Malta OL, de Sá GF, Simas AM (2000) J Mol Struct (THEOCHEM) 527:245–251

    Article  CAS  Google Scholar 

  7. Dolg M (2000) Modern methods and algorithms of quantum chemistry, vol. 1. In: Grotendorst J (ed) John von Neumann Institute for Computing, Jülich, NIC Series, pp 479–508

  8. Cundari TR, Stevens WJ (1993) Chem Phys 98:5555–5565

    Article  CAS  Google Scholar 

  9. Freire RO, Rocha GB, Simas AM (2005) Inorg Chem 44:3299–3310

    Article  PubMed  CAS  Google Scholar 

  10. de Andrade AVM, da Costa Jr NB, Simas AM, de Sá GF (1994) Chem Phys Lett 227:349–353

    Article  Google Scholar 

  11. Rocha GB, Freire RO, Júnior NBC, de Sá GF, Simas AM (2004) Inorg Chem 43:2346–2354

    Article  PubMed  CAS  Google Scholar 

  12. Wang DQ, Zhao CY, Phillips DL (2004) Organometallics 23:1953–1960

    Article  CAS  Google Scholar 

  13. Hay PJ (2003) Faraday Discuss 124:69–83

    Article  PubMed  CAS  Google Scholar 

  14. Vazquez J, Bo C, Poblet JM, de Pablo J, Bruno J (2003) Inorg Chem 42:6136–6141

    Article  PubMed  CAS  Google Scholar 

  15. Joubert L, Maldivi P (2001) J Phys Chem A 105:9068–9076

    Article  CAS  Google Scholar 

  16. Bolvin H, Wahlgren U, Moll H, Reich T, Geipel G, Fanghanel T, Grenthe I (2001) J Phys Chem A 105:11441–11445

    Article  CAS  Google Scholar 

  17. Maron L, Eisenstein O (2000) J Phys Chem A 104:7140–7143

    Article  CAS  Google Scholar 

  18. Hay PJ, Martin RL (1998) J Chem Phys 109:3875–3881

    Article  CAS  Google Scholar 

  19. Dolg M, Stoll H, Savin A, Preuss H (1989) Theor Chim Acta 75:173–194

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Revision A.7. Gaussian Inc., Pittsburgh, PA

  21. Villa A, Cosentino U, Pitea D (2000) J Phys Chem A 104:3421–3429

    Article  CAS  Google Scholar 

  22. Cosentino U, Villa A, Pitea D, Moro G, Barone V, Maiocchi A (2002) J Am Chem Soc 124:4901–4909

    Article  PubMed  CAS  Google Scholar 

  23. Cosentino U, Pitea D, Moro G, Barone V, Villa A, Muller RN, Botteman F (2004) Theor Chem Acc 111:204–209

    CAS  Google Scholar 

  24. Mohamed-Ibrahim MI, Chee SS, Buntine MA, Cox MJ, Tiekink ERT (2000) Organometallics 19:5410–5415

    Article  CAS  Google Scholar 

  25. Chen DL, Lai CS, Tiekink ERT (2003) Zeitschrift fur Kristallographie 218:747–752

    Article  CAS  Google Scholar 

  26. Allen FH (2002) Acta Crystallogr B 58:380–388

    Article  PubMed  CAS  Google Scholar 

  27. Bruno IJ, Cole JC, Edgington PR, Kessler M, Macrae CF, McCabe P, Pearson J, Taylor R (2002) Acta Crystallogr B 58:389–397

    Article  PubMed  CAS  Google Scholar 

  28. Allen FH, Motherwell WDS (2002) Acta Crystallogr B 58:407–422

    Article  PubMed  CAS  Google Scholar 

  29. Chatterjee A, Maslen EN, Watson KJ (1988) Acta Crystallogr Sect B: Struct Sci 44:381–386

    Article  Google Scholar 

  30. Cosentino U, Moro G, Pitea D, Calabi L, Maiocchi A (1997) J Mol Struct (THEOCHEM) 392:75–85

    CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the financial support from CNPq, CAPES (Brazilian agencies), and Grants from Instituto do Milênio de Materiais Complexos, FACEPE (Programa Primeiros Projetos) and Construção do Conhecimento por Agrupamento de Dados (CoCADa). We also wish to thank CENAPAD (Centro Nacional de Processamento de Alto Desempenho) at Campinas, Brazil, for having made available to us their computational facilities Finally, we gratefully acknowledge the Cambridge Crystallographic Data Centre for the Cambridge Structural Database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo M. Simas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freire, R.O., Rocha, G.B. & Simas, A.M. Lanthanide complex coordination polyhedron geometry prediction accuracies of ab initio effective core potential calculations. J Mol Model 12, 373–389 (2006). https://doi.org/10.1007/s00894-005-0027-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0027-5

Keywords

Navigation