Skip to main content
Log in

Hydrogen-bonding behavior of various conformations of the HNO3…(CH3OH)2 ternary system

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Nine minima were found on the intermolecular potential energy surface for the ternary system HNO3(CH3OH)2 at the MP2/aug-cc-pVDZ level of theory. The cooperative effect, which is a measure of the hydrogen-bonding strength, was probed in these nine conformations of HNO3…(CH3OH)2. The results are discussed here in terms of structures, energetics, infrared vibrational frequencies, and topological parameters. The cooperative effect was observed to be an important contributor to the total interaction energies of the cyclic conformers of HNO3…(CH3OH)2, meaning that it cannot be neglected in simulations in which the pair-additive potential is applied.

The H-bonding behavior of various conformations of the HNO3(CH3OH)2 trimer was investigated

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, New York

    Google Scholar 

  2. Hobza P, Zahradnik R (1988) Chem Rev 88:871–897

  3. Bulychev VP, Tokhadze KG (2006) J Mol Struct 790:2–10

  4. Rzepkowska J, Uras N, Sadlej J, Buch V (2002) J Phys Chem B 106:1790–1796

  5. Aruran E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Pure Appl Chem 83:1619–1636

  6. Weimann M, Farnik M, Suhm MA, Alikhani ME, Sadlej J (2006) J Mol Struct 790:18–26

  7. Balci M, Boylu O, Uras-Aytemiz N (2007) J Chem Phys 126:244308–244308

  8. Balcı FM, Uras-Aytemiz N (2011) J Phys Chem A 115:5943–5954

  9. Sum AK, Sandler SI (2000) J Phys Chem A 104:1121–1129

  10. Andrzejewska A, Sadlej J (2004) J Chem Phys Lett 393:228–235

  11. Xantheas SS (2000) Chem Phys 258:225–231

  12. Alkorta I, Blanco F, Elguero J (2008) J Phys Chem A 112:6753–6759

  13. Sahu PK, Lee SL (2007) Int J Quantum Chem 107:2015–2023

  14. Tian Q, Wang Y, Shi W, Song S, Tang HA (2013) J Mol Model 19:5171–5185

  15. Olbert-Majkut A, Mierzwicki K, Mielke Z (2005) J Mol Struct 738:193–203

  16. Mahadevi AS, Sastry GN (2016) Chem Rev 116:2775–2825

  17. Molina MJ, Tso T-L, Molina LT, Wang FC-Y (1987) Science 238:1253–1257

  18. Solomon S, Garcia RR, Rowland FS, Wuebbles DJ (1986) Nature 321:755–758

  19. Leopold KR (2011) Annu Rev Phys Chem 62:327–349

  20. Lowe D, MacKenzie AR (2008) JASTP 70:13–40

  21. Ritzhaupt G, Devlin JP (1991) J Phys Chem A 95:90–95

  22. Hudson PK, Zondlo MA, Tolbert MA (2002) J Phys Chem A 106:2882–2888

  23. Wegner T, Kinnison DE, Garcia RR, Solomon SJ (2013) Geophys Res 118:4991–5002

  24. Devlin JP, Uras N, Sadlej J, Buch V (2002) Nature 417:269–271

  25. Buch V, Sadlej J, Aytemiz-Uras N, Devlin JP (2002) J Phys Chem A 106:9374–9389

  26. Riikonen S, Parkkinen P, Halonen L, Gerber RB (2013) J Phys Chem Lett 4:1850–1855

  27. Re S, Osamura Y, Suzuki Y, Schaefer III HF (1998) J Chem Phys 109:973–977

  28. Packerö MJ, Clary DC (1995) J Phys Chem 99:14323–14333

  29. Uras-Aytemiz N, Sadlej J, Devlin JP, Buch V (2006a) Chem Phys Lett 422:179–183

  30. Uras-Aytemiz N, Devlin JP, Sadlej J, Buch V (2006b) J Phys Chem B 110:21751–21763

  31. Whalley E, Falk M (1961) J Chem Phys 34:1554

  32. Iraci LT, Riffel BG, Robinson CB, Michelsen RR, Stephenson RM (2007) J Atmos Chem 58:253–266

  33. Escribano R, Couceiro M, Gomez PC, Carrasco E, Moreno MA, Herrero V (2003) J Phys Chem A 107:651–661

  34. McCurdy PR, Hess WP, Xantheas SS (2002) J Phys Chem A 106:7628–7635

  35. Canagaratna M, Phillips JA, Ott ME, Leopold KR (1998) J Phys Chem A 102:1489–1497

  36. Tao F-M, Higgins K, Klemperer W, Nelson DD (1996) Geophys Res Lett 23:1797–1800

  37. Scott JB, Wright J (2004) J Phys Chem A 108:10578–10585

  38. Dimitrova Y (2004) Spectrochim Acta Mol Biomol Spectrosc 60:1–8

  39. Staikova S, Donaldson DJ (2001) Phys Chem Chem Phys 3:1999–2006

  40. Balci FM, Uras-Aytemiz N (2011) J Phys Chem A 115:5943–5954

  41. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

  42. Frisch MJ, Trucks GW, Schlegel HB et al (2013) Gaussian 09, revision D.01. Gaussian, Inc., Wallingford

  43. Keith TA (2012) AIMAll, version 13.02.26. TK Gristmill Software, Overland Park. http://aim.tkgristmill.com

  44. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W (2011) J Chem Theory Comput 7:625–632

  45. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498–6506

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nevin Uras-Aytemiz.

Electronic supplementary material

ESM 1

(DOCX 40300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özsoy, H., Uras-Aytemiz, N. & Balcı, F.M. Hydrogen-bonding behavior of various conformations of the HNO3…(CH3OH)2 ternary system. J Mol Model 24, 23 (2018). https://doi.org/10.1007/s00894-017-3543-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3543-1

Keywords

Navigation