Skip to main content
Log in

Computational study of the thermodynamic stabilities of hydrogen-bonded complexes in solution

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Understanding of the multiple H-bonding arrays of heterocyclic compounds is essential to design effective building blocks of supramolecular polymers. We have carried out a comprehensive computational study on the thermodynamic stabilities of thirty-six H-bonded complexes with all possible H-bonding arrays in the gas phase and chloroform solvent by using M06-2X, SMD calculations and cc-pVDZ basis set. The multiple H-bonding arrays include donor acceptor–acceptor donor (DA–AD), DD–AA for the doubly H-bonded pairs, and DAD–ADA, DDA–AAD and DDD–AAA for the triply H-bonded pairs. The computational results have provided insights into the geometrical, energetic and solvation effects on the stabilities of these H-bonded complexes. The calculated free energies of association for the DD–AA (89) and the DDD–AAA (3335, 3635) H-bonded complexes are found to be inconsistent with the experimental measurements and observations that these complexes are the most strongly doubly and triply H-bonded pairs in solution, respectively, while the calculated binding free energies for all other H-bonding arrays are in good agreement with experimental values. The computational protocol can be used by practical chemists and undergraduate researchers as an efficient and state-of-the-art tool to study H-bonding interactions in supramolecular chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hobza P, Muller-Dethlefs K (2009) Noncovalent interactions. Theory and experiment. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  2. Riley KE, Hobza P (2011) Noncovalent interactions in biochemistry. WIREs Comput Mol Sci 1:3–17

    Article  CAS  Google Scholar 

  3. Riley KE, Pitonak M, Jurecka P, Hobza P (2010) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 110:5023–5063

    Article  CAS  Google Scholar 

  4. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  5. Riley KE, Hobza P (2007) Assessment of the MP2 method, along with several basis sets, for the computation of interaction energies of biologically relevant hydrogen bonded and dispersion bound complexes. J Phys Chem A 111:8257–8263

    Article  CAS  Google Scholar 

  6. Wong C, Zimmerman SC (2013) Orthogonality in organic, polymer, and supramolecular chemistry: from Merrifield to click chemistry. Chem Commun 49:1679–1695

    Article  CAS  Google Scholar 

  7. Anderson CA, Jones AR, Briggs EM, Novitsky EJ, Kuykendall DW, Sottos NR, Zimmerman SC (2013) High-affinity DNA base analogs as supramolecular, nanoscale promoters of macroscopic adhesion. J Am Chem Soc 135:7288–7295

    Article  CAS  Google Scholar 

  8. Yan X, Wang F, Zheng B, Huang F (2012) Stimuli-responsive supramolecular polymeric materials. Chem Soc Rev 41:6042–6065

    Article  CAS  Google Scholar 

  9. Li Y, Park T, Quansah JK, Zimmerman SC (2011) Synthesis of a redox-responsive quadruple hydrogen-bonding unit for applications in supramolecular chemistry. J Am Chem Soc 133:17118–17121

    Article  CAS  Google Scholar 

  10. Mout R, Rotello VM (2013) Bio and nano working together: engineering the protein-nanoparticle interface. Isr J Chem 53:495–496

    Article  Google Scholar 

  11. Gooch A, Murphy NS, Thomson NH, Wilson AJ (2013) Side-chain supramolecular polymers employing conformer independent triple hydrogen bonding arrays. Macromolecules 46:9634–9641

    Article  CAS  Google Scholar 

  12. Hohenstein EG, Sherrill CD (2012) Wavefunction methods for noncovalent interactions. WIREs Comput Mol Sci 2:304–326

    Article  CAS  Google Scholar 

  13. Grimme S (2011) Density functional theory with London dispersion corrections. WIREs Comput Mol Sci 1:211–228

    Article  CAS  Google Scholar 

  14. Cohen AJ, Mori-Sanchez P, Yang W (2012) Challenges for density functional theory. Chem Rev 112:289–320

    Article  CAS  Google Scholar 

  15. DiLabio GA, Koleini M (2014) Dispersion-correcting potentials can significantly improve the bond dissociation enthalpies and noncovalent binding energies predicted by density-functional theory. J Chem Phys 140:18A542-1-13

  16. Riley KE, Vondrasek J, Hobza P (2007) Performance of the DFT-D method, paired with the PCM implicit solvation model, for the computation of interaction energies of solvated complexes of biological interest. Phys Chem Chem Phys 9:5555–5560

    Article  CAS  Google Scholar 

  17. Pasalic H, Aquino AJA, Tunega D, Haberhauer G, Gerzabek MH, Georg HC, Moraes TF, Coutiho K, Canuto S, Lischka H (2010) Thermodynamic stability of hydrogen-bonded systems in polar and nonpolar environments. J Comput Chem 31:2045–2055

    Google Scholar 

  18. Grimme S (2012) Supramolecular binding thermodynamics by dispersion-corrected density functional theory. Chem Eur J 18:9955–9964

    Article  CAS  Google Scholar 

  19. Risthaus T, Grimme S (2013) Benchmarking of London dispersion-accounting density functional theory methods on very large molecular complexes. J Chem Theory Comput 9:1580–1591

    Article  CAS  Google Scholar 

  20. Sure R, Antony J, Grimme S (2014) Blind prediction of binding affinities for charged supramolecular host–guest systems: achievements and shortcomings of DFT-D3. J Phys Chem B 118:3431–3440

    Article  CAS  Google Scholar 

  21. Michalkova A, Gorb L, Hill F, Leszczynski J (2011) Can the Gibbs free energy of adsorption be predicted efficiently and accurately: an M05-2X DFT study. J Phys Chem A 115:2423–2430

    Article  CAS  Google Scholar 

  22. Scott AM, Gorb L, Mobley EA, Hill FC, Leszczynski J (2012) Predictions of Gibbs free energies for the adsorption of polyaromatic and nitroaromatic environmental contaminants on carbonaceous materials: efficient computational approach. Langmuir 28:13307–13317

    Article  CAS  Google Scholar 

  23. Scott AM, Gorb L, Burns EA, Yashki SN, Hill FC, Leszczynski J (2014) Toward accurate and efficient predictions of entropy and Gibbs free energy of adsorption of high nitrogen compounds on carbonaceous materials. J Phys Chem C 118:4774–4783

    Article  CAS  Google Scholar 

  24. Isayev O, Furmanchuk A, Gorb L, Leszczynski J (2008) Efficient and accurate ab initio prediction of thermodynamic parameters for intermolecular complexes. Chem Phys Lett 451:147–152

    Article  CAS  Google Scholar 

  25. Ribeiro RF, Marenich AV, Cramer CJ, Truhlar DG (2011) The solvation, partitioning, hydrogen bonding, and dimerization of nucleotide bases: a multifaceted challenge for quantum chemistry. Phys Chem Chem Phys 13:10908–10922

    Article  CAS  Google Scholar 

  26. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  27. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157–167

    Article  CAS  Google Scholar 

  28. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  29. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  30. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  31. Zimmerman SC, Corbin PS (2000) Heteroaromatic modules for self-assembly using multiple hydrogen bonds. Struct Bond 96:63–94

    Article  CAS  Google Scholar 

  32. Zimmerman SC, Murray TJ (1993) New supramolecular architectures using hydrogen bonding. Phil Trans R Soc Lond A 345:49–56

    Article  CAS  Google Scholar 

  33. Murray TJ, Zimmerman SC (1992) New triply hydrogen bonded complexes with highly variable stabilities. J Am Chem Soc 114:4010–4011

    Article  CAS  Google Scholar 

  34. Quinn JR, Zimmerman SC, Del Bene JE, Shavitt I (2007) Does the A·T or G·C base-pair possess enhanced stability? Quantifying the effects of CH···O interactions and secondary interactions on base-pair stability using a phenomenological analysis and ab initio calculations. J Am Chem Soc 129:934–941

    Article  CAS  Google Scholar 

  35. Schneider H-J (1996) A general scheme based on empirical increments for the prediction of hydrogen-bond associations of nucleobases and synthetic host–guest complexes. Chem Eur J 2:1446–1452

    Article  Google Scholar 

  36. Schneider H-J, Juneva RK, Simova S (1989) Solvent and structural effects on hydrogen bonds in some amides and barbiturates. An additive scheme for the stability of corresponding host–guest complexes. Chem Ber 122:1211–1213

    Article  CAS  Google Scholar 

  37. Hamilton AD, Van Engen D (1987) Induced fit in synthetic receptors: nucleotide base recognition by a molecular hinge. J Am Chem Soc 109:5035–5036

    Article  CAS  Google Scholar 

  38. Park TK, Schroeder J, Rebek J Jr (1991) New molecular complements to imides. Complexation of thymine derivatives. J Am Chem Soc 113:5125–5127

    Article  CAS  Google Scholar 

  39. Kyogoku Y, Lord RC, Rich A (1967) The effect of substituents on hydrogen bonding. Proc Natl Acad Sci USA 57:250–257

    Article  CAS  Google Scholar 

  40. Kelly TR, Bridger GJ, Zhao C (1990) Bisubstrate reaction templates. Examination of the consequences of identical versus different binding sites. J Am Chem Soc 112:8024–8034

    Article  CAS  Google Scholar 

  41. Kelly TR, Zhao C, Bridger GJ (1989) A bisubstrate reaction template. J Am Chem Soc 111:3744–3745

    Article  CAS  Google Scholar 

  42. Pellizzaro ML, McGhee AM, Renton LC, Nix MG, Fisher J, Turnbull WB, Wilson AJ (2011) Conformer-independent ureidoimidazole motifs—tools to probe conformational and tautomeric effects on the molecular recognition of triply hydrogen-bonded heterodimers. Chem Eur J 17:14508–14517

    Article  CAS  Google Scholar 

  43. Djurdjevic S, Leigh DA, McNab H, Parsons S, Teobaldi G, Zerbetto F (2007) Extremely strong and readily accessible AAA–DDD triple hydrogen bond complexes. J Am Chem Soc 129:476–477

    Article  CAS  Google Scholar 

  44. Frisch MJ et al (2013) Gaussian 09, Revision D.01, Gaussian, Inc. Wallingford, CT, USA

  45. Zhao Y, Truhlar DG (2010) Assessment of model chemistries for noncovalent interactions. Chem Phys Lett 502:1–13

    Article  Google Scholar 

  46. Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  47. Gao D (2009) Acidities of water and methanol in aqueous solution and DMSO. J Chem Edu 86:864–868

    Article  CAS  Google Scholar 

  48. Gooch A, Nedolisa C, Houton KA, Lindsay CI, Saiani A, Wilson AJ (2012) Macromolecules 45:4723–4729

    Article  CAS  Google Scholar 

  49. Kuykendall DW, Anderson CA, Zimmerman SC (2009) Hydrogen-bonded DeUG·DAN heterocomplex: structure and stability and a scalable synthesis of DeUG with reactive functionality. Org Lett 11:60–64

    Article  Google Scholar 

  50. Ong HC, Zimmerman SC (2006) Higher affinity quadruply hydrogen-bonded complexation with 7-deazaguanine urea. Org Lett 8:1589–1592

    Article  CAS  Google Scholar 

  51. Zimmerman SC, Kwan WA (1995) Comparison of enthalpies of formation in solution and enthalpies for HPLC retention for hydrogen-bonded host–guest complexes. Angew Chem Int Ed Engl 34:2404–2406

    Article  CAS  Google Scholar 

  52. Zimmerman SC, Murray TJ (1994) Hydrogen bonded complexes with the AA·DD, AA·DDD, and AAA·DD motifs: the role of three centered (bifurcated) hydrogen bonding. Tetrahedron Lett 35:4077–4080

    Article  CAS  Google Scholar 

  53. Murray JS, Politzer P (2011) The electrostatic potential: an overview. WIREs Comput Mol Sci 1:153–163

    Article  CAS  Google Scholar 

  54. Lei J, Chen Y, Feng X, Jin J, Gu J (2014) Electrostatic potentials of camptothecin and its analogues. Theor Chem Acc 133:1542–1548

    Article  Google Scholar 

  55. Lukin O, Leszczynski J (2002) Rationalizing the strength of hydrogen-bonded complexes. Ab initio HF and DFT studies. J Phys Chem A 106:6775–6782

    Article  CAS  Google Scholar 

  56. Spartan 2010. Wavefunction, Inc. Irvine, CA

  57. Jorgensen WL, Pranata J (1990) Importance of secondary interactions in triply hydrogen bonded complexes: guanine–cytosine vs uracil-2,6-diaminopyridine. J Am Chem Soc 112:2008–2010

    Article  CAS  Google Scholar 

  58. Pranata J, Wierschke SG, Jorgensen WL (1991) OPLS potential functions for nucleotide bases. Relative association constants of hydrogen-bonded base pairs in chloroform. J Am Chem Soc 113:2810–2819

    Article  CAS  Google Scholar 

  59. Papajak E, Zheng J, Xu X, Leverenz HR, Truhlar DG (2011) Perspectives on basis sets beautiful: seasonal plantings of diffuse basis functions. J Chem Theory Comput 7:3027–3034

    Article  CAS  Google Scholar 

  60. Schneider H-J (2003) Comment on “Rationalizing the strength of hydrogen-bonded complexes. Ab initio HF and DFT studies”. J Phys Chem A 107:9250

    Article  CAS  Google Scholar 

  61. Lukin O, Leszczynski J (2003) Reply to Comment on “Rationalizing the strength of hydrogen-bonded complexes. Ab initio HF and DFT studies”. J Phys Chem A 107:9251–9252

    Article  CAS  Google Scholar 

  62. Blight BA, Hunter CA, Leigh DA, McNab H, Thomson PIT (2011) An AAAA–DDDD quadruple hydrogen-bond array. Nature Chem 3:244–248

    Article  CAS  Google Scholar 

  63. Leigh DA, Robertson CC, Slawin AMZ, Thomson PIT (2013) AAAA–DDDD quadruple hydrogen-bond arrays featuring NH···N and CH···N hydrogen bonds. J Am Chem Soc 135:9939–9943

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Gratitude is expressed to NSF for support of this work (HBCU-UP RIA Award #1137486), and for support of the MERCURY Consortium (Award #1229354). We thank Ohio Supercomputer Center for computational resources and Central State University for endorsing undergraduate research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daqing Gao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, D., Lang, D. & Robinson, T. Computational study of the thermodynamic stabilities of hydrogen-bonded complexes in solution. Theor Chem Acc 133, 1577 (2014). https://doi.org/10.1007/s00214-014-1577-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1577-3

Keywords

Navigation