Skip to main content
Log in

Molecular dynamics calculation on structures, stabilities, mechanical properties, and energy density of CL-20/FOX-7 cocrystal explosives

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this article, different CL-20/FOX-7 cocrystal models were established by the substitution method based on the molar ratios of CL-20:FOX-7. The structures and comprehensive properties, including mechanical properties, stabilities, and energy density, of different cocrystal models were obtained and compared with each other. The main aim was to estimate the influence of molar ratios on properties of cocrystal explosives. The molecular dynamics (MD) simulation results show that the cocrystal model with molar ratio 1:1 has the best mechanical properties and highest binding energy, so the CL-20/FOX-7 cocrystal model is more likely to form in 1:1 M ratio. The detonation parameters show that the cocrystal explosive exhibited preferable energy density and excellent detonation performance. In a word, the 1:1 cocrystal model has the best comprehensive properties, is very promising, and worth more theoretical investigations and experimental tests. This paper gives some original theories to better understand the cocrystal mechanism and provides some helpful guidance and useful instructions to help design CL-20 cocrystal explosives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agrawal JP (1998) Recent trends in high-energy materials. Prog Energy Combust Sci 24:1–30

    Article  CAS  Google Scholar 

  2. Sikder AK, Sikder N (2004) A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J Hazard Mater 112:1–15

    Article  CAS  Google Scholar 

  3. Lara OF, Espinosa PG (2007) Cocrystals definitions. Supramol Chem 19:553–557

    Article  Google Scholar 

  4. Shan N, Zaworotko MJ (2008) The role of cocrystals in pharmaceutical science. Drug Discov Today 13:440–446

    Article  CAS  Google Scholar 

  5. Wu JT, Zhang JG, Li T, Li ZM, Zhang TL (2015) A novel cocrystal explosive NTO/TZTN with good comprehensive properties. RSC Adv. 5:28354–28359

    Article  CAS  Google Scholar 

  6. Wang YP, Yang ZW, Li HZ, Zhou XQ, Zhang Q, Wang JH (2014) A novel cocrystal explosive of HNIW with good comprehensive properties. Propellants Explos Pyrotech 39:590–596

    Article  CAS  Google Scholar 

  7. Guo DZ, An Q, Goddard WA, Zybin SV, Huang FL (2014) Compressive shear reactive molecular dynamics studies indicating that cocrystals of TNT/CL-20 decrease sensitivity. J Phys Chem C 118:30202–30208

    Article  CAS  Google Scholar 

  8. Bolton O, Simke LR, Pagoria PF, Matzger AJ (2012) High power explosive with good sensitivity: a 2:1 cocrystal of CL-20:HMX. Cryst Growth Des 12:4311–4314

    Article  CAS  Google Scholar 

  9. Sun T, Xiao JJ, Liu Q, Zhao F, Xiao HM (2014) Comparative study on structure, energetic and mechanical properties of a ε-CL-20/HMX cocrystal and its composite with molecular dynamics simulation. J Mater Chem A 2:13898–13904

    Article  CAS  Google Scholar 

  10. Ding X, Gou RJ, Ren FD, Liu F, Zhang SH, Gao HF (2016) Molecular dynamics simulation and density functional theory insight into the cocrystal explosive of hexaazaisowurtzitane/nitroguanidine. Int J Quantum Chem 116:88–96

    Article  CAS  Google Scholar 

  11. Landenberger KB, Matzger AJ (2010) Cocrystal engineering of prototype energetic material: supramolecular chemistry of 2,4,6-trinitrotoluene. Cryst Growth Des 10:5341–5347

    Article  CAS  Google Scholar 

  12. Lin H, Chen JF, Zhu SG, Li HZ, Huang Y (2017) Synthesis, characterization, detonation performance, and DFT calculation of HMX/PNO cocrystal explosive. J Energ Mater 35:95–108

    Article  CAS  Google Scholar 

  13. Wei CX, Huang H, Duan XH, Pei CH (2011) Structures and properties prediction of HMX/TATB co-crystal. Propellants Explos Pyrotech 36:416–423

    Article  CAS  Google Scholar 

  14. Feng RZ, Zhang SH, Ren FD, Gou RJ, Gao L (2016) Theoretical insight into the binding energy and detonation performance of ε-, γ-, β-CL-20 cocrystals with β-HMX, FOX-7, and DMF in different molar ratios, as well as electrostatic potential. J Mol Model 22:123

    Article  Google Scholar 

  15. Landenberger KB, Bolton O, Matzger AJ (2013) Two isostructural explosive cocrystals with significantly different thermodynamic stabilities. Angew Chem Int Ed 52:6468–6471

    Article  CAS  Google Scholar 

  16. Li YX, Chen SS, Ren FD (2015) Theoretical insights into the structures and mechanical properties of HMX/NQ cocrystal explosives and their complexes, and the influence of molecular ratios on their bonding energies. J Mol Model 21:245

    Article  CAS  Google Scholar 

  17. Landenberger KB, Bolton O, Matzger AJ (2015) Energetic-energetic cocrystals of diacetone diperoxide (DADP): dramatic and divergent sensitivity modifications via cocrystallization. J Am Chem Soc 137:5074–5079

    Article  CAS  Google Scholar 

  18. Neilsen AT, Nissan RA, Vanderah DJ, Coon CL, Gilardi RD, George CF, Flippen-Anderson JL (1990) Polyazapolycyclics by condensation of aldehydes with amines. 2: formation of 2,4,6,8,10,12-hexabenzyl-2,4,6,8,l0,12-hexaazatetracyclo[5.5.0.05.9.03,11] dodecanes from glyoxal and benzylamines. J Org Chem 55:1459–1466

    Article  Google Scholar 

  19. Nielsen AT, Chafin AP, Christian SL, Moore DW, Nadler MP, Nissan RA, Vanderah DJ, Gilardi RD, George CF, Flippen-Anderson JL (1998) Synthesis of polyazapolycyclic caged polynitramines. Tetrahedron 54:11793–11812

    Article  CAS  Google Scholar 

  20. Latypov NV, Bergman J, Langlet A (1998) Synthesis and reactions of 1,1-diamino-2,2-dinitroethylene. Tetrahedron 54:11525–11536

    Article  CAS  Google Scholar 

  21. Sanji T, Nakatsuka Y, Ohnishi S (2000) The property of 1,1-diamino-2,2-dinitroethylene. Macromolecules 33:8514–8526

    Article  Google Scholar 

  22. Politzer P, Concha MC, Grice ME, Murray JS, Lane P (1998) Computational investigation of the structures and relative stabilities of amino/nitro derivatives of ethylene. J Mol Struct (THEOCHEM) 452:75–83

    Article  CAS  Google Scholar 

  23. Agrawal JP (2005) Some new high energy materials and their formulations for specialized applications. Propellants Explos Pyrotech 30:316–328

    Article  CAS  Google Scholar 

  24. Foltz MF, Coon CL, Garcia F (1994) The thermal stability of the polymorphs of hexanitrohexaazaisowurtzitane, part I. Propellants Explos Pyrotech 19:19–25

    Article  CAS  Google Scholar 

  25. Zhao XQ, Shi NC (1995) Crystal structure of ε-hexanitrohexaazaisowurtzitane. Chin Sci Bull 40:2158–2160

    Google Scholar 

  26. Zhou C, Huang XP, Zhou YS, Wang XJ, Fu XY (2007) Crystal structure and thermal decomposition of FOX-7. Chin J Explos Propellants 30:60–63

    CAS  Google Scholar 

  27. Wu ZK, Shu YJ, Liu N, Ding XY, Wu MJ, Wang K, Wang B, Lu YY (2016) Molecular dynamics simulation of CL-20/FOX-7 co-crystal. Chin J Explos Propellants 39:37–42

    Google Scholar 

  28. Sun H, Ren PJ, Fried R (1998) The COMPASS force field: parameterization and validation for phosphazenes. Comput Theor Polym Sci 8:229–246

    Article  CAS  Google Scholar 

  29. Bunte SW, Sun H (2000) Molecular modeling of energetic materials: the parameterization and validation of nitrate esters in the COMPASS forcefield. J Chem Chem B 104:2477–2489

    Article  CAS  Google Scholar 

  30. Michael JM, Sun H, Rigby D (2004) Development and validation of COMPASS force field parameters for molecules with aliphatic azide chains. J Comput Chem 25:61–71

    Article  Google Scholar 

  31. Wu JL (1993) Mechanics of elasticity. Tongji University Press, Shanghai

    Google Scholar 

  32. Weiner JH (1983) Statistical mechanics of elasticity. Wiley, New York

    Google Scholar 

  33. Zhu W, Xiao JJ, Zhu WH, Xiao HM (2009) Molecular dynamics simulations of RDX and RDX-based plastic-bonded explosives. J Hazard Mater 164:1082–1088

    Article  CAS  Google Scholar 

  34. Xu XJ, Xiao HM, Xiao JJ, Zhu W, Huang H, Li JS (2006) Molecular dynamics simulations for pure ε-CL-20 and ε-CL-20-based PBXs. J Phys Chem B 110:7203–7207

    Article  CAS  Google Scholar 

  35. Qiu L, Xiao HM (2009) Molecular dynamics study of binding energies, mechanical properties, and detonation performances of bicyclo-HMX-based PBXs. J Hazard Mater 164:329–336

    Article  CAS  Google Scholar 

  36. Xiao JJ, Zhu W, Ma XF, Xiao HM, Huang H, Li JS (2008) A novel model for the molecular dynamics simulation study on mechanical properties of HMX/F2311 polymer-bonded explosive. Mol Simul 34:775–779

    Article  CAS  Google Scholar 

  37. Gao HF, Zhang SH, Ren FD, Liu F, Gou RJ, Ding X (2015) Theoretical insight into the co-crystal explosive of 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20)/1,1-diamino-2,2-dinitroethylene (FOX-7). Comput Mater Sci 107:33–41

    Article  CAS  Google Scholar 

  38. Muthurajan H, Sivabalan R, Talawar MB, Asthana SN (2004) Computer simulation for prediction of performance and thermodynamic parameters of high energy materials. J Hazard Mater 112:17–33

    Article  CAS  Google Scholar 

  39. Cooper PW (1992) Extending estimation of C-J pressure of explosives to the very low-density region. Proceed 18th Int Pyrotech Symp

  40. Ou YX (2006) Explosives. Beijing Institute of Technology Press, Beijing

    Google Scholar 

  41. Jin SH, Song QC (2010) Explosive theory. Northwestern Polytechnical University Press, Xi’an

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Yun Hang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hang, GY., Yu, WL., Wang, T. et al. Molecular dynamics calculation on structures, stabilities, mechanical properties, and energy density of CL-20/FOX-7 cocrystal explosives. J Mol Model 23, 362 (2017). https://doi.org/10.1007/s00894-017-3533-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3533-3

Keywords

Navigation