Skip to main content
Log in

Intramolecular versus intermolecular hydrogen bonds in a novel conjugated dimethylamino-benzylidene-amino-2-naphthoic acid Schiff base

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A new compound based on the D-π-A concept, where D = dimethylamino-phenyl and A = naphthoic acid, separated by an imine motif, was designed, synthesized and characterized. The spectral, energetics, and structural characteristics of the compound were studied thoroughly theoretically by density functional theory (DFT) in the gas and aqueous phases and experimentally (steady-state absorption) in aqueous media with various degrees of polarity and hydrogen bonding ability. This compound shows high sensitivity to the polarity, basicity and proton affinity of the environment. Based on DFT, TD-DFT and NBO analysis, the compound exists in the ground-state with both intermolecular and intramolecular hydrogen bond conformations in association with the –COOH, with latter isomer calculated to be more stable. Furthermore, structural changes via intermolecular solute–solvent interactions, dictate electronic modifications and spectral changes.

Acidic and basic sites in DMAMN involved in protonation/deprotonation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Chart 2
Fig. 7a–d
Fig. 8
Fig. 9a–d
Fig. 10

Similar content being viewed by others

References

  1. Desiraju GR (2002) Acc Chem Res 35:565

    Article  CAS  Google Scholar 

  2. Laurence C, Brameld KA, Graton J, Le Questel J-Y, Renault E (2009) J Med Chem 52:4073–4086

  3. Desiraju G, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, New York

    Google Scholar 

  4. Gilli G, Gilli P (2009) The nature of the hydrogen bond—outline of a comprehensive hydrogen bond theory. Oxford University Press, New York

    Book  Google Scholar 

  5. Schulz GE, Schirmer RH (1979) Principles of protein structure. Springer, New York

    Book  Google Scholar 

  6. Redinha JS, Lopes Jesus AJ (2011) Molecular recognition and crystal growth. In: Mcevoy JA (ed) Molecular Recognition: biotechnology, chemical engineering and materials applications. Nova, New York

    Google Scholar 

  7. Scheiner S (1994) Annu Rev Phys Chem 45:23

    Article  CAS  Google Scholar 

  8. Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, New York

    Google Scholar 

  9. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  10. Desiraju GR, Steiner T (2001) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, New York

    Book  Google Scholar 

  11. Levy Y, Onuchic JN (2006) Annu Rev Biophys Biomol Struct 35:389–415

  12. Gausuel Y, Rossky PJ (eds) (1994) Ultrafast reaction dynamics and solvent effects, part III. AIP Press, New York, pp 173–274

    Google Scholar 

  13. Bountis T (ed.) (1992) Proton transfer in hydrogen-bonded systems. Plenum, New York

    Google Scholar 

  14. Beck JF, Mo Y (2007) J Comput Chem 28:455–466

    Article  CAS  Google Scholar 

  15. Li Z, Liu X, Zhao W, Wang S, Wan Z, Wei L, Yu M (2014) Anal Chem 86:2521–2525

  16. Rahim F, Malik U, Wadood FH, Khan A, Javid F, Taha MT, Rehman W, Rehman AU, Khan KM (2015) Bioorg Chem 60:42–48

  17. Kose M, Ceyhan G, Tumer M, Demirtas I, Gonul I, McKee V (2015) Spectrochem Acta A 137:477–485

    Article  CAS  Google Scholar 

  18. Hong M, Geng H, Niu M, Wang F, Li D, Liu J, Yin H (2014) Eur J Med Chem 86:550–561

    Article  CAS  Google Scholar 

  19. Booysen IN, Maikoo S, Akerman MP, Xulu B (2014) Polyhedron 79:250–257

    Article  CAS  Google Scholar 

  20. Basu S, Ganguly A, Chakraborty P, Sen R, Banerjee K, Chatterjee, Efferth MT, Choudhuri SK (2012) Biochimie 94:166–183

  21. Da Silveira, Luz VC, Oliveira JS, Grazian CC, Ciriolo II, Ferreira MRAM (2008) J Inorg Biochem 102:1090

    Article  Google Scholar 

  22. Sek D, Siwy M, Bijak K, Filapek M, Malecki G, Nowak EM, Sanetra J, Jarczyk-Jedryka A, Laba K, Lapkowski M, Schab-balcerzak E (2015)J Electroanal Chem 751:128–136

  23. Smith JA, DiStasio Jr RA, Hannah NA, Winter RW, Weakley TJR, Gard GL, Rananavare SB (2014) J Phys Chem B 108:19940–19948

  24. Wang J, Lv M, Wang Z, Zhou M, Gu C, Guo C (2015) J Photochem Photobiol A Chem 309:37–46

  25. Sui Y, Li D-P, Li C-H, Zhou X-H, Wu T, You X-Z (2010) Inorg Chem 49:1286–1288

  26. Šepelj M, Lesac A, Baumeister U, Diele S, Nguyenc HL, Bruce DW (2007) J Mater Chem 17:1154

    Article  Google Scholar 

  27. Iwan A, Janeczekb H, Hreniaka A, Palewiczac M, Pociechad D (2010) Liq Cryst 37:1021

    Article  CAS  Google Scholar 

  28. Li H, Han YF, Jin GX (2011) Dalton Trans 40:4982

    Article  CAS  Google Scholar 

  29. Han Y, Li FH, Wenga LH, Jin GX (2010) Chem Commun 46:3536

    Google Scholar 

  30. Roy N, Dutta A, Mondal P, Paul PC, Singh TS (2015) J Lumin 165:167–173

    Article  CAS  Google Scholar 

  31. Iwan A, Sek D (2008) Prog Polym Sci 33:289

    Article  CAS  Google Scholar 

  32. Yang CJ, Jenekhe SA (2009) Macromolecules 24:1180

    Google Scholar 

  33. Saheb, V., Sheikhshoaie, I., (2011) Spectrochim Acta A. 81, 144.

  34. Frisch MJ et al Gaussian 09, revision B.01. Gaussian Inc., Wallingford

  35. Becke AD (1993) J Chem Phys 98:5648

  36. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

  37. Ditchfield R, Hehre W, Pople J (1971) J Chem Phys 54:724–728

  38. Grimme S (2004) J Comput Chem 25:1463–1473

    Article  CAS  Google Scholar 

  39. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  40. Tomas J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093

    Article  Google Scholar 

  41. Smith I (2007) Single molecule catalysis Science 315:470–471

    Article  CAS  Google Scholar 

  42. Casida ME (1995) In: Chong DP (ed) Recent advances in computational chemistry, vol 1. World Scientific, Singapore

    Google Scholar 

  43. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

  44. Glendening ED, Landis CR, Weinhold F (2013) J Comput Chem 34(24):2134

  45. Weinhold F, Landis CR (2005) For a comprehensive overview of NBO theory and applications. Valency and bonding: a natural bond orbital donor-acceptor perspective. Cambridge University Press, Cambridge UK

  46. Kamlet MJ, Taft R (1976) The Solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) Basicities J Am Chem Soc 98:377–383

    Article  CAS  Google Scholar 

  47. Taft R, Kamlet MJ (1976) J Am Chem Soc 98:2886–2894

  48. Kamlet MJ, Abboud JL, Taft R (1977) J Am Chem Soc 99:6027–6038

  49. Kamlet MJ, Abboud JLM, Abraham MH, Taft R (1983) J Org Chem 48:2877–2887

  50. Lusters R, Rodriguez-Prieto JL, Mosquera FM, Rodriguez MC (2015) J Phys Chem B 119:2475–2489

    Google Scholar 

  51. McQuarrie DA (1976) Statistical mechanics. Harper & Row, New York

    Google Scholar 

  52. Kohn W, Becke AE, Parr RG (1996) J Phys Chem 100:12974–12980

    Article  CAS  Google Scholar 

  53. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  54. Politzer P, Awad FA (1998) Theo Chem Acc 99:83–87

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Ahmed Z. Al-Ansari.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 17464 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Ansari, I.A.Z. Intramolecular versus intermolecular hydrogen bonds in a novel conjugated dimethylamino-benzylidene-amino-2-naphthoic acid Schiff base. J Mol Model 23, 215 (2017). https://doi.org/10.1007/s00894-017-3381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3381-1

Keywords

Navigation