Skip to main content

Advertisement

Log in

Comparative simulation study of chemical synthesis of functional DADNE material

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Amorphous molecular simulation to model the reaction species in the synthesis of chemically inert and energetic 1,1-diamino-2,2-dinitroethene (DADNE) explosive material was performed in this work. Nitromethane was selected as the starting reactant to undergo halogenation, nitration, deprotonation, intermolecular condensation, and dehydration to produce the target DADNE product. The Materials Studio (MS) forcite program allowed fast energy calculations and reliable geometric optimization of all aqueous molecular reaction systems (0.1–0.5 M) at 283 K and 298 K. The MS forcite-computed and Gaussian polarizable continuum model (PCM)-computed results were analyzed and compared in order to explore feasible reaction pathways under suitable conditions for the synthesis of DADNE. Through theoretical simulation, the findings revealed that synthesis was possible, and a total energy barrier of 449.6 kJ mol−1 needed to be overcome in order to carry out the reaction according to MS calculation of the energy barriers at each stage at 283 K, as shown by the reaction profiles. Local analysis of intermolecular interaction, together with calculation of the stabilization energy of each reaction system, provided information that can be used as a reference regarding molecular integrated stability.

Materials Studio software has been suggested for the computation and simulation of DADNE synthesis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Herve G, Jacob G, Latypov N (2005) Tetrahedron 61:6743

    Article  CAS  Google Scholar 

  2. Fang X, Mcluckie WG (2015) J Hazard Mater 285:375

    Article  CAS  Google Scholar 

  3. Vo TT, Shreeve JM (2015) J Mater Chem A 3:8756

    Article  CAS  Google Scholar 

  4. Vo TT, Zhang J, Parrish DA, Twamley B, Shreeve JM (2013) J Am Chem Soc 135:11787

    Article  CAS  Google Scholar 

  5. Zhang Y, Sun Q, Xu K, Song J, Zhao F (2016) Propellants Explos Pyrotech 41:35

    Article  CAS  Google Scholar 

  6. Janzon B, Bergman H, Eldsater C, Lamnevik C, Ostmark H (2002) 20th International Symposium on Ballistics, 23–27 September 2002, Orlando, FL

  7. Hudson RJ, Zioupos P, Gill PP (2012) Propellants Explos Pyrotech 37:191

    Article  CAS  Google Scholar 

  8. Gottfried JL, De Lucia Jr FC, Piraino SM (2013) Ultrafast Laser Heating of RDX andPolyethylene; ARL-MR-839; US Army Research Laboratory: Aberdeen Proving Ground,MD

  9. Doherty RM, Watt DS (2008) Propellants Explos Pyrotech 33:4

    Article  CAS  Google Scholar 

  10. Zhang C, Peng Q, Wang L, Wang X (2010) Propellants Explos Pyrotech 35:561

    Article  CAS  Google Scholar 

  11. Latypov NV, Bergman J, Langlet A, Wellmar U, Bemm U (1998) Tetrahedron 54(38):11525

    Article  CAS  Google Scholar 

  12. Latypov NV, Johansson M, Holmgren E, Sizova EV, Sizov VV, Bellamy AJ (2007) Org Process Res Dev 11:56

    Article  CAS  Google Scholar 

  13. Bemm U, Ostmark H (1998) Acta Crystallogr C54:1997

    CAS  Google Scholar 

  14. Ostmark H, Langlet A, Berman H, Wingborg N, Wellmar U, Bemm U (1998) 11th Symposium (International) on Detonation, Snowmass Village, CO, p 807

  15. Karlsson S, Ostmark H, Eldsater C, Carlsson T, Bergman H, Wallin S, Pettersson A (2002) 12th International Symposium on Detonation, 11–16 August 2002, San Diego, CA

  16. Bergman H, Pettersson Å, Östmark H, Stenmark H, Laitala CB (2009) Insensitive Munitions and Energetic Materials Technology Symposium, 11–14 May 2009, Tucson, AZ

  17. Ostmark H, Bergman H, Bemm U, Goede P, Holmgren E, Johansson M, Langlet A, Latypov N, Pettersson A, Pettersson M-L, Wingborg N, Vorde C, Stenmark H, Karlsson L, Hihkio M (2001) 32nd International Annual Conference, ICT, Karlsruhe, Germany

  18. Lochert IJ (2001) Technical Report DSTO-TR-1238

  19. Chyłek Z, Cudziło S, Bładek J, Pietrzyk S (2005) Optimization of 1,1-diamino- 2,2-dinitroethene synthesis (in Polish). Biuletyn WAT 54:19

  20. Anniyappan M, Talawar MB, Gore GM, Venugopalan S, Gandhe BR (2006) J Hazard Mater B137:812

    Article  Google Scholar 

  21. Jalovy Z, Ek S, Ottis J, Dudek K, Ruzicka A, Nlycka A, Latypov NV (2013) J Energ Mater 31(2):87

    Article  CAS  Google Scholar 

  22. Gao B, Wu P, Huang B, Wang J, Qiao Z, Yang G, Nie F (2014) New J Chem 38:2334

    Article  CAS  Google Scholar 

  23. Mandal AK, Thanigaivelan U, Pandey RK, Asthana S, Khomane RB, Kulkarni BD (2012) Org Process Res Dev 16:1711

    Article  CAS  Google Scholar 

  24. Li T, Li R, Nie F, Wang J, Huang W, Yang G (2014) Propellants Explos Pyrotech 39:260

    Article  CAS  Google Scholar 

  25. Tao Y, Dreger ZA, Gupta YM (2015) Chem Phys Lett 624:59

    Article  CAS  Google Scholar 

  26. Tirker L (2015) Propellants Explos Pyrotech 40:180

    Article  Google Scholar 

  27. Trzcinski WA, Chyłek Z (2012) Cent Eur J Energ Mater 9:101

    CAS  Google Scholar 

  28. Mandal AK, Sahu SK, Jadhav VV, Narasimhan VL (2007) International autumn seminar on propellants, explosives and pyrotechnics. Xi’an, Shaanxi, China, p 78

  29. Kushtaev AA, D’yakonov AV, Yudin NV, Zbarskii VL (2009) Russ J Appl Chem 82:1785

    Article  CAS  Google Scholar 

  30. Chyłek Z (2008) Investigation of kinetics of nitration of 2-methylpyrimidine-4,6-dione (in Polish). Biuletyn WAT 56:27

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT

  32. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  33. Frisch MA, Popie John A, Binkley JS (1984) J Chem Phys 80:3265

    Article  CAS  Google Scholar 

  34. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117

    Article  CAS  Google Scholar 

  35. Tomasi J, Mennucci B, Canc E (1999) J Mol Struct (THEOCHEM) 464:211

    Article  CAS  Google Scholar 

  36. Liu M, Liu C (2016) J Mol Model 22:153

    Article  Google Scholar 

  37. Liu MH, Cheng KF, Yen KH (2015) J Chin Chem Soc 62:803

    Article  CAS  Google Scholar 

  38. Cheng KF, Liu MH (2014) J Theor Comput Chem 13(5):1450045-1. doi:10.1142/S021963361450045X

  39. Simulation software, Accelrys website. (http://accelrys.com/products/collaborative-science/biovia-materials-studio/)

  40. Cheng KF, Liu MH, Ho PH (2014) Int J Quantum Chem 114(21):1457

    Article  CAS  Google Scholar 

  41. Peng C, Schlegel HB (1993) Isr J Chem 33:449

    Article  CAS  Google Scholar 

  42. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) J Comput Chem 17:49

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the National Center for High-Performance Computing for support with calculation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Hsien Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2356 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M.H., Liu, C.W. Comparative simulation study of chemical synthesis of functional DADNE material. J Mol Model 23, 4 (2017). https://doi.org/10.1007/s00894-016-3182-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3182-y

Keywords

Navigation