Skip to main content
Log in

Examination of the quality of various force fields and solvation models for the equilibrium simulations of GA88 and GB88

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Elucidating the relationship between sequence and conformation is essential for the understanding of functions of proteins. While sharing 88 % sequence identity and differing by only seven residues, GA88 and GB88 have completely different structures and serve as ideal systems for investigating the relationship between sequence and function. Benefiting from the continuous advancement of the computational ability of modern computers, molecular dynamics (MD) simulation is now playing an increasingly important role in the study of proteins. However, the reliability of MD simulations is limited by the accuracy of the force fields and solvent model approximations. In this work, several AMBER force fields (AMBER03, AMBER99SB, AMBER12SB, AMBER14SB, AMBER96) and solvent models (TIP3P, IGB5, IGB7, IGB8) have been employed in the simulations of GA88 and GB88. The statistical results from 19 simulations show that GA88 and GB88 both adopt more compact structures than the native structures. GB88 is more stable than GA88 regardless of the force fields and solvent models utilized. Most of the simulations overestimated the salt bridge interaction. The combination of AMBER14SB force field and IGB8 solvent model shows the best overall performance in the simulations of both GA88 and GB88. AMBER03 and AMBER12SB also yield reasonable results but only in the TIP3P explicit solvent model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anfinsen C (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  CAS  Google Scholar 

  2. Araki M, Tamura A (2007) Transformation of an α-helix peptide into a β-hairpin induced by addition of a fragment results in creation of a coexisting state. Proteins 66:860–868

    Article  CAS  Google Scholar 

  3. Murzin A, Brenner S, Hubbard T, Chothia C (1995) SCOP a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    CAS  Google Scholar 

  4. Orengo C, Michie A, Jones D, Swindells M, Thornton J (1997) CATH—a hierarchic classification of protein domain structures. Structure 5:1093–1109

    Article  CAS  Google Scholar 

  5. Rose G, Creamer T (1994) Protein folding: predicting predicting. Proteins 19:1–3. http://www.ncbi.nlm.nih.gov/pubmed/?term=Protein+folding%3A+predicting+predicting+creamer

  6. Jones D, Moody C, Uppenbrink J, Viles J, Doyle P, Harris C, Pearl L, Sadler P, Thornton J (1996) Towards meeting the paracelsus challenge: the design, synthesis, and characterization of paracelsin-43, an alpha-helical protein with over 50 % sequence identity to an all-beta protein. Proteins 24:502–513

    Article  CAS  Google Scholar 

  7. Rose G (1997) The Paracelsus Challenge. Nat Protein Folding Struct Biol 4:512–514

    Article  CAS  Google Scholar 

  8. Dalal S, Balasubramanian S, Regan L (1997) Protein alchemy: changing beta-sheet into alpha-helix. Nat Struct Biol 4:548–552

    Article  CAS  Google Scholar 

  9. Yuan S, Clarke N (1998) A hybrid sequence approach to the paracelsus challenge. Proteins 30:136–143

    Article  CAS  Google Scholar 

  10. Alexander P, He Y, Chen Y, Orban J, Bryan P (2007) The design and characterization of two proteins with 88 sequence identity but different structure and function. Proc Natl Acad Sci 104:11963–11968

    Article  CAS  Google Scholar 

  11. Alexander P, He Y, Chen Y, Orban J, Bryan P (2009) A minimal sequence code for switching protein structure and function. Proc Natl Acad Sci 106:21149–21154

    Article  CAS  Google Scholar 

  12. He Y, Chen Y, Alexander P, Bryan P, Orban J (2008) NMR structures of two designed proteins with high sequence identity but different fold and function. Proc Natl Acad Sci 105:14412–14417

    Article  CAS  Google Scholar 

  13. Cordes M, Burton R, Walsh N, McKnight C, Sauer R (2000) An evolutionary bridge to a new protein fold. Nat Struct Biol 7:1129–1132

    Article  CAS  Google Scholar 

  14. Van Dorn L, Newlove T, Chang S, Ingram W, Cordes M (2006) Relationship between sequence determinants of stability for two natural homologous proteins with different folds. Biochemistry 45:10542–10553

    Article  CAS  Google Scholar 

  15. Meier S, Jensen P, David C, Chapman J, Holstein T, Grzesiek S, Ozbek S (2007) Continuous molecular evolution of protein-domain structures by single amino acid changes. Curr Biol 17:173–178

    Article  CAS  Google Scholar 

  16. Kister A, Phillips J (2008) Stringent test for hydrophobicity scales: Two proteins with 88 % sequence identity but different structure and function. Proc Natl Acad Sci 105:9233–9237

    Article  CAS  Google Scholar 

  17. He Y, Chen Y, Alexander P, Bryan P, Orban J (2012) Mutational tipping points for switching protein folds and functions. Structure 20:283–291

    Article  CAS  Google Scholar 

  18. Shen Y, Bryan P, He Y, Orban J, Baker D, Bax A (2010) De novo structure generation using chemical shifts for proteins with high-sequence identity but different folds. Protein Sci 19:349– 356

    Article  CAS  Google Scholar 

  19. Giri R, Morrone A, Travaglini-Allocatelli C, Jemth P, Brunori M, Gianni S (2012) Folding pathways of proteins with increasing degree of sequence identities but different structure and function. Proc Natl Acad Sci 109:17772–17776

    Article  CAS  Google Scholar 

  20. Kouza M, Hansmann U (2012) Folding simulations of the a and b domains of protein. G J Phys Chem B 116:6645–6653

    Article  CAS  Google Scholar 

  21. Lazim R, Mei Y, Zhang D (2012) Replica exchange molecular dynamics simulation of structure variation from α/4 β-fold to 3 α-fold protein. J Mol Model 18:1087–1095

    Article  CAS  Google Scholar 

  22. Wu X, Jin Z, Xiu Z, Li G (2013) The challenge to the rule of homology modeling: folding mechanism study of protein GA and GB with high sequence identity but different native structures. Curr Pharm Design 19:2282–2292

    Article  CAS  Google Scholar 

  23. Onuchic J, Luthey-Schulten Z, Wolynes P (1997) Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem 48:545–600

    Article  CAS  Google Scholar 

  24. Cheung M, Chavez L, Onuchic J (2004) The energy landscape for protein folding and possible connections to function. Polymer 45:547–555

    Article  CAS  Google Scholar 

  25. Jorgensen W (2004) The many roles of computation in drug discovery. Science 303:1813–1818

    Article  CAS  Google Scholar 

  26. Jones DT (1999) Protein Secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  CAS  Google Scholar 

  27. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinforma 9:40

    Article  Google Scholar 

  28. Soding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21:951–960

    Article  Google Scholar 

  29. Jiang F, Wu Y (2014) Folding of fourteen small proteins with a residue-specific force field and replica-exchange molecular dynamics. J Am Chem Soc 136:9536–9539

    Article  CAS  Google Scholar 

  30. Zhou R (2003) Trp-cage folding free energy landscape in explicit water. Proc Natl Acad Sci 100:13280–13285

    Article  CAS  Google Scholar 

  31. Lei HX, Wu CH, Liu HG, Duan Y (2007) Folding free-energy landscape of villin headpiece subdomain from molecular dynamics simulations. Proc Natl Acad Sci 104:4925–4930

    Article  CAS  Google Scholar 

  32. Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) How fast-folding proteins fold. Science 334:517–520

    Article  CAS  Google Scholar 

  33. Mei Y, Wei C, Yip YM, Ho CY, Zhang JZH, Zhang D (2012) Thermodynamic studies of trp-cage based on polarized force field. Theor Chem Folding Acc 131:1168

    Article  Google Scholar 

  34. Gao Y, Lu X, Duan L, Zhang D, Mei Y, Zhang JZH (2013) Direct folding simulation of a long helix in explicit water. Appl Phys Lett 102:193706

    Article  Google Scholar 

  35. Duan LL, Gao Y, Mei Y, Zhang QG, Tang B, Zhang JZH (2012) Folding of a helix is critically stabilized by polarization of backbone hydrogen bonds: Study in explicit water. J Phys Chem B 116:3430–3435

    Article  CAS  Google Scholar 

  36. Xiang Y, Duan LL, Zhang JZH (2010) Folding dynamics of a small protein at room temperature via simulated coherent two-dimensional infrared spectroscopy. Phys Chem Chem Phys 12:15681–15688

    Article  CAS  Google Scholar 

  37. Duan LL, Mei Y, Zhang DW, Zhang QG, Zhang JZH (2010) Folding of a helix at room temperature is critically aided by electrostatic polarization of intraprotein hydrogen bonds. J Am Chem Soc 132:11159–11164

    Article  CAS  Google Scholar 

  38. Nguyen H, Maier J, Huang H, Perrone V, Simmerling C (2014) Folding simulations for proteins with diverse topologies are accessible in days with a physics-based force field and implicit solvent. J Am Chem Soc 136:13959–13962

    Article  CAS  Google Scholar 

  39. Zeng J, Jiang F, Wu Y (2016) Folding simulations of an α-helical hairpin motif α t α with residue-specific force fields. J Phys Chem B 120:33–41

    Article  CAS  Google Scholar 

  40. Lopes PE, Guvench O, MacKerell AJ (2015) Current status of protein force fields for molecular dynamics simulations. Methods Mol Biol 1215:47–71

    Article  CAS  Google Scholar 

  41. Luchko T, Gusarov S, Roe DR, Simmerling C, Case DA, Tuszynski J, Kovalenko A (2010) Three-dimensional molecular theory of solvation coupled with molecular dynamics in amber. J Chem Theory Comput 6:607–624

    Article  CAS  Google Scholar 

  42. Best R, Buchete N, Hummer G (2008) Are current molecular dynamics force fields too helical?. Biophys J 95:L07–L09

    Article  CAS  Google Scholar 

  43. Rubinstein A, Sherman S (2004) Influence of the solvent structure on the electrostatic interactions in proteins. Biophys J 87:1544–1557

    Article  CAS  Google Scholar 

  44. Affleck R, Haynes C, Clark D (1992) Solvent dielectric effects on protein dynamics. Proc Natl Acad Sci 89:5167–5170

    Article  CAS  Google Scholar 

  45. Pitera J, Falta M, van Gunsteren W (2001) Dielectric properties of proteins from simulation: the effects of solvent, ligands, pH, and temperature. Biophys J 80:2546–2555

    Article  CAS  Google Scholar 

  46. Chopra G, Summa C, Levitt M (2008) Solvent dramatically affects protein structure refinement. Proc Natl Acad Sci 105:20239–20244

    Article  CAS  Google Scholar 

  47. Chen J, Brooks CI (2007) Can molecular dynamics simulations provide high-resolution refinement of protein structure. Proteins 67:922–930

    Article  CAS  Google Scholar 

  48. Xia B, Tsui V, Case D, Dyson H, Wright P (2002) Comparison of protein solution structures refined by molecular dynamics simulation in vacuum, with a generalized Born model, and with explicit water. J Biomol NMR 22:317–331

    Article  CAS  Google Scholar 

  49. Im W, Chen J, Brooks CI (2005) Peptide and protein folding and conformational equilibria: theoretical treatment of electrostatics and hydrogen bonding with implicit solvent models. Adv Protein Chem 72:173–193

    Article  Google Scholar 

  50. Bursulaya B, Brooks CR (2000) Comparative study of the folding free energy landscape of a three-stranded β-sheet protein with explicit and implicit solvent models. J Phys Chem B 104:12378–12383

    Article  CAS  Google Scholar 

  51. Feig M Modeling solvent environments: applications to simulations of biomolecules. 2010, Book

  52. Duan Y, Wu C, Chowdhury S, Lee M, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T et al (2003) A Point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  CAS  Google Scholar 

  53. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 65:712–725

    Article  CAS  Google Scholar 

  54. Kollman P, Dixon R, Cornell W, Fox T, Chipot C, Pohorille A (1997). In: van Gunsteren W, Weiner P, Wilkinson A (eds) Computer Simulation of Biomolecular Systems, vol 3. Springer, Netherlands, pp 83–96

  55. Onufriev A, Bashford D, Case D (2004) Exploring protein native states and large-scale conformational changes with a modified generalized Born model. Proteins 55:383–394

    Article  CAS  Google Scholar 

  56. Mongan J, Simmerling C, McCammon J, Case D, Onufriev A (2007) Generalized born model with a simple, robust molecular volume correction. J Chem Theory Comput 3:156– 169

    Article  CAS  Google Scholar 

  57. Nguyen H, Roe DR, Simmerling C (2013) Improved generalized born solvent model parameters for protein simulations. J Chem Theory Comput 9:2020–2034

    Article  CAS  Google Scholar 

  58. Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  59. Debye P (1909) Naherungsformeln fur die Zylinderfunktionen fur grobe Werte des Arguments und unbeschrankt veranderliche Werte des Index. Math Ann 67:535–558

    Article  Google Scholar 

  60. Morales J, Nocedal J (2000) Automatic preconditioning by limited memory quasi-Newton updating. SIAM J Optim 10:1079– 1096

    Article  Google Scholar 

  61. Pastor R, Brooks B, Szabo A (1988) An analysis of the accuracy of Langevin and molecular dynamics algorithms. Mol Phys 65:1409–1419

    Article  Google Scholar 

  62. Ryckaert J, Ciccotti G, Berendsen H (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327– 341

    Article  CAS  Google Scholar 

  63. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N l o g(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  64. Case DA, Darden TA, Cheatham IIIT. E, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM et al (2010) AMBER 11. University of California, San Francisco

    Google Scholar 

  65. Shell M, Ritterson R, Dill K (2008) Test on peptide stability of AMBER force fields with implicit solvation. J Phys Chem B 112:6878–6886

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Supercomputer Center of East China Normal University for the support of CPU time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Zeng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 2.42 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Li, Y., Zhang, J.Z. et al. Examination of the quality of various force fields and solvation models for the equilibrium simulations of GA88 and GB88. J Mol Model 22, 177 (2016). https://doi.org/10.1007/s00894-016-3027-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3027-8

Keywords

Navigation