Skip to main content
Log in

Computational design of zinc-ion-responsive two-photon fluorescent probes with conjugated multi-structures

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A series of conjugated multi-structured fluorescent probe molecules based on a salen ligand were designed and investigated in dimethyl sulfoxide solvent using a quantum-chemical method. The results indicate that the one-photon absorption and fluorescence emission spectra (λ O and λ EM) of these molecules generally show redshifts (of 23.1–74.5 and 22.7–116.6 nm, respectively) upon the coordination of the molecules to Zn2+. Large Stokes shifts (1511.2–11744.1 cm−1) were found for the molecules, meaning that interference between λ O and λ EM can be avoided for these molecules. The two-photon absorption spectra of the molecules usually present blueshifts, but the two-photon absorption cross-section (δ) greatly increases (by 221.5–868.0 GM) upon the coordination of the molecules with Zn2+. Most of the molecules show strong two-photon absorption peaks in the range 678.2–824.4 nm, i.e., in the near-infrared region. In a word, the expanded π-conjugated frameworks of these molecules lead to redshifted λ O and λ EM and enhanced δ values. Moreover, (L-phenyl)​2 and (L-phenyl-ethynyl)2 are the most suitable of the multi-structured molecules examined in this work for use as two-photon fluorescent probes for zinc ion detection in vivo.

Scheme of the calculated transition energies (E0k and E0n) and the transition dipole moments (M0k and Mkn). NTO 109, NTO 197 and NTO 228 of Zn(L-phenyl-ethynyl), Zn2(L-phenyl-ethynyl)2 and Zn3(L-phenyl)3 for one-photon  absorption, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kim D, Ryu HG, Ahn KH (2014) Org Biomol Chem 12:4550–4566

    Article  CAS  Google Scholar 

  2. Zhou LY, Zhang XB, Wang QQ, Lv YF, Mao GJ, Luo AL, Wu YX, Wu Y, Zhang J, Tan WH (2014) J Am Chem Soc 136:9838–9841

    Article  CAS  Google Scholar 

  3. Luo XB, Wu WB, Deng F, Chen DZ, Luo SL, Au C (2014) Microchim Acta 181:1361–1367

    Article  CAS  Google Scholar 

  4. Yao S, Belfield KD (2012) Eur J Org Chem 3199–3217

  5. Capodilupo AL, Vergaro V, Fabiano E, Giorgi MD, Baldassarre F, Cardone A, Maggiore A, Maiorano V, Sanvitto D, Gigli G, Ciccarella G (2015) J Mater Chem B 3:3315–3323

    Article  CAS  Google Scholar 

  6. Zheng KB, Lin WY, Tan L, Chen H, Cui HJ (2014) Chem Sci 5:3439–3448

  7. Zipfel WR, Williams RM, Webb WW (2003) Nat Biotechnol 21:1369–1377

    Article  CAS  Google Scholar 

  8. Helmchen F, Denk W (2005) Nat Methods 2:932–940

    Article  CAS  Google Scholar 

  9. Williams RM, Zipfel WR, Webb WW (2001) Curr Opin Chem Biol 5:603–608

    Article  CAS  Google Scholar 

  10. Que EL, Domaille DW, Chang CJ (2008) Chem Rev 108:1517–1549

    Article  CAS  Google Scholar 

  11. Berg JM, Shi Y (1996) Science 271:1081–1085

    Article  CAS  Google Scholar 

  12. O’Halloran TV (1993) Science 261:715–724

    Article  Google Scholar 

  13. Williams RJP, Fraústo JJR (2000) Coord Chem Rev 200–202:247–348

  14. Coleman JE (1992) Annu Rev Biochem 61:897–946

    Article  CAS  Google Scholar 

  15. Sorensen MB, Stoltenberg M, Juh LS, Danscher G, Ernst E (1997) Prostate 31:125–130

    Article  CAS  Google Scholar 

  16. Ciglenečki I, Bura-Nakić E, Inzelt G (2007) Electroanalysis 19:1437–1445

    Article  Google Scholar 

  17. Zhang Y, Guo X, Si W, Jia L, Qian X (2008) Org Lett 10:473–476

    Article  CAS  Google Scholar 

  18. Woodroofe CC, Lippard SJ (2003) J Am Chem Soc 125:11458–11459

    Article  CAS  Google Scholar 

  19. Joshi BP, Cho WM, Kim J, Juyoung Y, Lee KH (2007) Bioorg Med Chem Lett 17:6425–6429

    Article  CAS  Google Scholar 

  20. Hu Q, Tan YQ, Liu M, Yu JC, Cui YJ, Yang Y (2014) Dyes Pigments 107:45–50

    Article  CAS  Google Scholar 

  21. Divya KP, Sreejith S, Ashokkumar P, Yuzhan K, Peng Q, Maji SK, Tong Y, Yu H, Zhao Y, Ramamurthyc P, Ajayaghosh A (2014) Chem Sci 5:3469–3474

    Article  CAS  Google Scholar 

  22. Jiang J, MacLachlan MJ (2010) Org Lett 12:1020–1023

    Article  CAS  Google Scholar 

  23. Zhao D, Moore JS (2003) Chem Commun 807–818

  24. Gokel GW, Leevy WM, Weber ME (2004) Chem Rev 104:2723–2750

    Article  CAS  Google Scholar 

  25. Atwood JL, Barbour LJ, Hardie MJ, Raston CL (2001) Coord Chem Rev 222:3–32

    Article  CAS  Google Scholar 

  26. Gao J, Zingaro RA, Reibenspies JH, Martell AE (2004) Org Lett 6:2453–2455

    Article  CAS  Google Scholar 

  27. Paluch M, Lisowski J, Lis T (2006) Dalton Trans 381–388

  28. Hai Y, Chen JJ, Zhao P, Lv HB, Yu Y, Xu PY, Zhang JL (2011) Chem Commun 47:2435–2437

    Article  CAS  Google Scholar 

  29. Huang S, Zou LY, Ren AM, Guo JF, Liu XT, Feng JK, Yang BZ (2013) Inorg Chem 52:5702–5713

    Article  CAS  Google Scholar 

  30. Cozzi PG (2003) Angew Chem Int Ed 42:2895–2898

    Article  CAS  Google Scholar 

  31. Saito B, Katsuki T (2004) Synlett 15:1557–1560

    Google Scholar 

  32. Zelder FH, Rebek J Jr (2006) Chem Commun 753–754

  33. Splan KE, Massari AM, Morris GA, Sun SS, Reina E, Nguyen ST, Hupp JT (2003) Eur J Inorg Chem 2348–2351

  34. Escudero-Adán EC, Belmonte MM, Martin E, Salassa G, Benet-Buchholz J, Kleij AW (2011) J Org Chem 76:5404–5412

    Article  Google Scholar 

  35. Gallant AJ, Chong JH, MacLachlan MJ (2006) Inorg Chem 45:5248–5250

    Article  CAS  Google Scholar 

  36. Kleij AW (2009) Dalton Trans 4635–4639

  37. Kawase T, Fujiwara N, Tsutumi M, Oda M, Maeda Y, Wakahara T, Akasaka T (2004) Angew Chem Int Ed 43:5060–5062

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revisions A.02 and B.01. Gaussian, Inc., Wallingford

  39. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  40. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ (1982) J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  41. Cramer CJ (2002) Essentials of computational chemistry: theories and models. Wiley, New York, p 87

  42. Kim KS, Tarakeshwar P, Lee JY (2000) Chem Rev 100:4145–4185

    Article  CAS  Google Scholar 

  43. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  44. Jacquemin D, Perpete EA, Scalmani G, Frisch MJ, Kobayashi R, Adamo C (2007) J Chem Phys 126:144105

  45. Kogej T, Beljonne D, Meyers F, Perry JW, Marder SR, Brédas JL (1998) Chem Phys Lett 298:1–6

    Article  CAS  Google Scholar 

  46. Zojer E, Beljonne D, Kogej T, Vogel H, Marder SR, Perry JW, Brédas JL (2002) J Chem Phys 116:3646–3658

    Article  CAS  Google Scholar 

  47. Orr BJ, Ward JF (1971) Mol Phys 20:513–526

    Article  CAS  Google Scholar 

  48. Bishop DM, Luis JM, Kirtman B (2002) J Chem Phys 116:9729–9739

    Article  CAS  Google Scholar 

  49. Beljonne D, Wenseleers W, Zojer E, Shuai ZG, Vogel H, Pond SJK, Perry JW, Marder SR, Brédas JL (2002) Adv Funct Mater 12:631–641

    Article  CAS  Google Scholar 

  50. Anderson WP, Edwards WD, Zerner MC (1986) Inorg Chem 25:2728–2732

    Article  CAS  Google Scholar 

  51. Zerner MC (2000) ZINDO, a general semi-empirical program package. Department of Chemistry, University of Florida, Gainesville

  52. Huang S, Ren AM, Guo JF, Liu XT, Feng JK (2012) Polymer 53:2991–3000

    Article  CAS  Google Scholar 

  53. Xu Z, Ren AM, Guo JF, Liu XT, Huang S, Feng JK (2013) Photochem Photobiol 89:300–309

    Article  CAS  Google Scholar 

  54. Zheng XY, Wang XY, Yi SF, Wang NQ, Peng YM (2010) J Comput Chem 31:1458–1468

    Article  CAS  Google Scholar 

  55. Vainrub A, Pettitt BM (2003) Biopolymers 68:265–270

    Article  CAS  Google Scholar 

  56. Yang R, Guo XF, Wang W, Zhang Y, Jia LH (2012) J Fluoresc 22:1065–1071

    Article  CAS  Google Scholar 

  57. Xu YQ, Xiao LL, Zhang YF, Sun SG, Pang Y (2014) RSC Adv 4:4827–4830

    Article  CAS  Google Scholar 

  58. Wang JL, Lin WY, Li WL (2012) Chem Eur J 18:13629–13632

    Article  CAS  Google Scholar 

  59. Yang BZ, Zhang Q, Zhong J, Huang S, Zhang HX (2012) Org Electron 13:2568–2574

    Article  CAS  Google Scholar 

  60. Martin RL (2003) J Chem Phys 118:4775–4777

    Article  CAS  Google Scholar 

  61. Weissleder R, Ntziachristos V (2003) Nat Med 9:123–128

    Article  CAS  Google Scholar 

  62. Liu XT, Guo JF, Ren AM, Huang S, Feng JK (2012) J Org Chem 77:585–597

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of China (grants 11404041, 21473071, 21173099, and 20973078), the Major State Basis Research Development Program (grant 2013CB 834801), the Natural Science Foundation of Jiangsu Provincial Department of Education (grant SCZ1212400003), Special Funding to Basic scientific Research Projects for Central Colleges, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Foundation of State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, State Key Laboratory of Satellite Ocean Environment Dynamics (Second Institute of Oceanography, SOA) (SOED1503), and the High Performance Computation Laboratory of Changzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Zhu Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 9.16 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Yang, BZ., Jiang, XF. et al. Computational design of zinc-ion-responsive two-photon fluorescent probes with conjugated multi-structures. J Mol Model 22, 34 (2016). https://doi.org/10.1007/s00894-015-2887-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2887-7

Keywords

Navigation