Skip to main content
Log in

Pharmacophore modeling, 3D-QSAR, and docking study of pyrozolo[1,5-a]pyridine/4,4-dimethylpyrazolone analogues as PDE4 selective inhibitors

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Phosphodiesterases 4 enzyme is an attractive target for the design of anti-inflammatory and bronchodilator agents. In the present study pharmacophore and atom based 3D-QSAR studies were carried out for pyrozolo[1,5-a]pyridine/4,4-dimethylpyrazolone analogues. A five point pharmacophore model was developed using 52 molecules having pIC50 values ranging from 9.959 to 3.939. The best predictive pharmacophoric hypothesis AHHRR.3 was characterized by survival score (2.944), cross validated (r2 = 0.8147), regression coefficient (R2 = 0.9545) and Fisher ratio (F =173) with 4 component PLS factor. Results explained that one hydrogen bond acceptor, two aromatic rings and two hydrophobic groups are crucial for the PDE4 inhibition. The docking studies of all selected inhibitors in the active site of PDE4 showed crucial hydrogen bond interactions with Asp392, Asn395 Tyr233, and Gln443 residues. The pharmacophoric features R15 and R16 exhibited π-π stacking with His234, Phe414, and Phe446 residues. The generated model was further validated by carrying out the decoy test. The binding free energies of these inhibitors in the catalytic domain of 1XMU were calculated by the molecular mechanics/generalized Born surface area VSGB 2.0 method. The results of molecular dynamics simulation confirmed the extra precision docking-predicted priority for binding sites, the accuracy of docking, and the reliability of active conformations. Pyrozolo[1,5-a]pyridine/4,4-dimethylpyrazolone analogues in this study showed lower binding affinity toward PDE3A in comparison to PDE4. Outcomes of the present study provide insight in designing novel molecules with better PDE4 inhibitory activity.

Pyrozolo[1,5-a]pyridines/4,4-dimethylpyrazolones

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baumer W, Hoppmann J, Rundfeldt C, Kietzmann M (2007) Highly selective phosphodiesterase 4 inhibitors for the treatment of allergic skin diseases and psoriasis. Inflamm Allergy Drug Targets 6:17–26

    Article  Google Scholar 

  2. Souness JE, Aldous D, Sargent C (2000) Immunosuppressive and anti-inflammatory effects of cyclic AMP phosphodiesterase (PDE) type 4 inhibitors. Immunopharmacology 47:127–162

    Article  CAS  Google Scholar 

  3. Liu J, Chen M, Wang X (2000) Calcitonin gene-related peptide inhibits lipopolysaccharide-induced interleukin-12 release from mouse peritoneal macrophages, mediated by the cAMP pathway. Immunology 101:61–67

    Article  CAS  Google Scholar 

  4. Conti M, Richter W, Mehats C, Livera G, Park JY, Jin C (2003) Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J Biol Chem 278:5493–5496

    Article  CAS  Google Scholar 

  5. Wang P, Ohleth KM, Wu P, Billah MM, Egan RW (1999) Phosphodiesterase 4B2 is the predominant phosphodiesterase species and undergoes differential regulation of gene expression in human monocytes and neutrophils. Mol Pharmacol 56:170–174

    CAS  Google Scholar 

  6. Jin SL, Conti M (2002) Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-α responses. Proc Natl Acad Sci U S A 99:7628–7633

    Article  CAS  Google Scholar 

  7. Banner KH, Press NJ (2009) Dual PDE3/4 inhibitors as therapeutic agents for chronic obstructive pulmonary disease. Br J Pharmacol 157:892–906

    Article  CAS  Google Scholar 

  8. Abbott-Banner KH, Page CP (2014) Dual PDE3/4 and PDE4 inhibitors: novel treatments for COPD and other inflammatory airway diseases. Basic Clin Pharmacol Toxicol 114:365–376

    Article  CAS  Google Scholar 

  9. Blease K, Burke-Gaffney A, Hellewell PG (1998) Modulation of cell adhesion molecule expression and function on human lung microvascular endothelial cells by inhibition of phosphodiesterases 3 and 4. Br J Pharmacol 124:229–237

    Article  CAS  Google Scholar 

  10. Gewald RI, Grunwald C, Egerland U (2013) Discovery of triazines as potent, selective and orally active PDE4 inhibitors. Bioorg Med Chem Lett 23:4308–4314

    Article  CAS  Google Scholar 

  11. Xu RX, Rocque WJ, Lambert MH, Vanderwall DE, Luther MA, Nolte RT (2004) Crystal Structures of the Catalytic Domain of Phosphodiesterase 4B Complexed with AMP, 8-Br-AMP, and Rolipram. J Mol Biol 337:355–365

    Article  CAS  Google Scholar 

  12. Card GL, England BP, Suzuki Y, Fong D, Powell B, Lee B, Luu C, Tabrizizad M, Gillette S, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KYJ (2004) Structural basis for the activity of drugs that inhibit phosphodiesterases. Structure 12:2233–2247

    Article  CAS  Google Scholar 

  13. Qing H, Johnand C, Hengming KE (2003) The crystal structure of AMP-bound PDE4 suggests a mechanism for phosphodiesterase catalysis. Biochemistry 42:13220–13226

  14. Kanes SJ, Tokarczyk J, Siegel SJ, Bilker W, Abeland T, Kelly MP (2007) Rolipram: a specific phosphodiesterase 4 inhibitor with potential antipsychotic activity. Neuroscience 144:239–246

    Article  CAS  Google Scholar 

  15. Wittmann M, Helliwell PS (2013) Phosphodiesterase 4 inhibition in the treatment of psoriasis, psoriatic arthritis and other chronic inflammatory diseases. Dermatol Ther (Heidelb) 3:1–15

  16. Hatzelmann A, Morcillo EJ, Lungarella G, Adnot S, Sanjar S, Beume R, Schudt C, Tenor H (2010) The preclinical pharmacology of roflumilast—a selective, oral phosphodiesterase 4 inhibitor in development for chronic obstructive pulmonary disease. Pulm Pharmacol Ther 23:235–256

    Article  CAS  Google Scholar 

  17. Kelly V, Genovese M (2013) Novel small molecule therapeutics in rheumatoid arthritis. Rheumatology 52:1155–1162

  18. Rao RM, Luther BJ, Rani CS, Suresh N, Kapavarapu R, Parsa KV, Rao MV, Pal M (2014) Synthesis of 2H-1,3-benzoxazin-4(3H)-one derivatives containing indole moiety: their in vitro evaluation against PDE4B. Bioorg Med Chem Lett 24:1166–1171

  19. Goto T, Shiina A, Murata T, Tomii M, Yamazaki T, Yoshida K, Yoshino T, Suzuki O, Sogawa Y, Mizukami K, Takagi N, Yoshitomi T, Etori M, Tsuchida H, Mikkaichi T, Nakao N, Takahashi M, Takahashi H, Sasaki S (2014) Identification of the 5,5-dioxo-7,8-dihydro-6H-thiopyrano[3,2-d]pyrimidine derivatives as highly selective PDE4B inhibitors. Bioorg Med Chem Lett 24:893–899

    Article  CAS  Google Scholar 

  20. Praveena KSS, Durgadas S, Suresh Babu N, Akkenapally S, Ganesh Kumar C, Deora GS, Murthy NY, Mukkanti K, Pal S (2014) Synthesis of 2,2,4-trimethyl-1,2-dihydroquinolinyl substituted 1,2,3-triazole derivatives: Their evaluation as potential PDE 4B inhibitors possessing cytotoxic properties against cancer cells. Bioorg Chem 53:8–14

    Article  CAS  Google Scholar 

  21. Suzuki O, Mizukami K, Etori M, Sogawa Y, Takagi N, Tsuchida H, Morimoto K, Goto T, Yoshino T, Mikkaichi T, Hirahara K, Nakamura S, Maeda H (2013) Evaluation of the therapeutic index of a novel phosphodiesterase 4B-selective inhibitor over phosphodiesterase 4D in mice. J Pharmacol Sci 123:219–226

  22. Ochiai K, Naoki A, Kazuhiko I, Tetsuya K, Kazunori F, Akira O, Hitomi Z, Tokutaro Y, David RA, Yasushi K (2011) Phosphodiesterase inhibitors. Part 2: design, synthesis, and structure–activity relationships of dual PDE3/4-inhibitory pyrazolo[1,5-a]pyridines with anti-inflammatory and bronchodilatory activity. Bioorg Med Chem Lett 21:5451–5456

  23. Akihiko K, Satoshi T, Tatsunobu S, Koji O, Kazuhiko I, Tetsuya K, Akira O, Yuichi Y, Tokutaro Y, Yasushi K (2013) Phosphodiesterase inhibitors. Part 6: design, synthesis, and structure–activity relationships of PDE4-inhibitory pyrazolo[1,5-a]pyridines with anti-inflammatory activity. Bioorg Med Chem Lett 23:5311–5316

  24. Allcock RW, Blakli H, Jiang Z, Johnston KA, Morgan KM, Rosair GM, Iwase K, Kohno Y, Adams DR (2011) Phosphodiesterase inhibitors. Part 1: synthesis and structure activity relationships of pyrazolopyridine-pyridazinone PDE inhibitors developed from ibudilast. Bioorg Med Chem Lett 21:3307–3312

  25. Ochiai K, Satoshi T, Akihiko K, Tomohiko E, Naoki A, Tetsuya K, Akira O, Yuichi Y, Tokutaro Y, David RA, Kazuhiko I, Yasushi K (2012) Phosphodiesterase inhibitors. Part 4: design, synthesis and structure-activity relationships of dual PDE3/4-inhibitory fused bicyclic heteroaromatic-4,4-dimethylpyrazolones. Bioorg Med Chem Lett 22:5833–5838

  26. Ochiai K, Satoshi T, Tomohiko E, Akihiko K, Kazuhiko I, Tetsuya K, Kazunori F, Tokutaro Y, David RA, Robert WA, Zhong J, Yasushi K (2012) Phosphodiesterase inhibitors. Part 3: design, synthesis and structure–activity relationships of dual PDE3/4-inhibitory fused bicyclic heteroaromatic-dihydropyridazinones with anti-inflammatory and bronchodilatory activity. Bioorg Med Chem 20:1644–1658

    Article  CAS  Google Scholar 

  27. Ochiai K, Satoshi T, Akihiko K, Tomohiko E, Kazuhiko I, Akira O, Yuichi Y, Tokutaro Y, David RA, Yasushi K, Tetsuya K (2013) Phosphodiesterase inhibitors. Part 5: hybrid PDE3/4 inhibitors as dual bronchorelaxant/anti-inflammatory agents for inhaled administration. Bioorg Med Chem Lett 23:375–381

  28. Horowski R, Sastre-Y-Hernandez M (1985) Clinical effects of the neurotropic selective cAMP phosphodiesterase inhibitor rolipram in depressed patients: global evaluation of the preliminary reports. Curr Ther Res 38:23–29

  29. Spina D (2003) Phosphodiesterase-4 inhibitors in the treatment of inflammatory lung disease. Drugs 63:2575–2594

    Article  CAS  Google Scholar 

  30. Ke H, Wang H, Ye M (2011) Structural insight into the substrate specificity of phosphodiesterases. Handb Exp Pharmacol 204:121–134

    Article  CAS  Google Scholar 

  31. Omori K, Kotera J (2007) Overview of PDEs and their regulation. Circ Res 100:309–327

  32. Li J, Zhou N, Liu W, Li J, Feng Y, Wang X, Wu C, Bao J (2015) Discover natural compounds as potential phosphodiesterase-4B inhibitors via computational approaches. J Biomol Struct Dyn. doi:10.1080/07391102.2015.1070749

    Google Scholar 

  33. Shubina V, Niinivehmas S, Pentikainen OT (2015) Reliability of virtual screening methods in prediction of PDE4B-inhibitor activity. Curr Drug Discov Technol 12:117–126

  34. Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20:647–671

    Article  CAS  Google Scholar 

  35. Sastry GM, Dixon SL, Sherman W (2011) Rapid shape-based ligand alignment and virtual screening method based on atom/feature-pair similarities and volume overlap scoring. J Chem Inf Model 51:2455–2466

  36. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196

  37. Jacobson MP, Pincus DL, Rapp CS, Day TJF, Honig B, Shaw DE, Friesner RA (2004) A Hierarchical approach to all-atom protein loop prediction. Proteins: Struct Funct Bioinf 55:351–367

  38. Guo Z, Mohanty U, Noehre J, Sawyer TK, Sherman W, Krilov G (2010) Probing the α-helical structural stability of stapled p53 peptides: molecular dynamics simulations and analysis. Chem Biol Drug Des 75:348–359

  39. Gibson LC, Hastings SF, McPhee I, Clayton RA, Darroch CE, Mackenzie A, MacKenzie FL, Nagasawa M, Stevens PA, MacKenzie SJ (2006) The inhibitory profile of ibudilast against the human phosphodiesterase enzyme family. Eur J Pharmacol 538:39–42

  40. Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W (2010) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 6:1509–1519

  41. Connolly ML (1985) Computation of molecular volume. J Am Chem Soc 107:1118–1124

    Article  CAS  Google Scholar 

  42. Miller MD, Sheridan RP, Kearsley SK (1999) SQ: a program for rapidly producing pharmacophorically relevent molecular superpositions. J Med Chem 42:1505–1514

    Article  CAS  Google Scholar 

  43. Kirchmair J, Markt P, Distinto S, Wolber G, Langer T (2008) Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments and decoy selection-what can we learn from earlier mistakes? J Comput Aided Mol Des 22:213–228

    Article  CAS  Google Scholar 

  44. Sheridan RP, Singh SB, Fluder EM, Kearsley SK (2001) Protocols for bridging the peptide to nonpeptide gap in topological similarity searches. J Chem Inf Comput Sci 41:1395–1406

    Article  CAS  Google Scholar 

  45. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234

  46. Greenwood JR, Calkins D, Sullivan AP, Shelley JC (2010) Towards the comprehensive, rapid and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J Comput Aided Mol Des 24:591–604

    Article  CAS  Google Scholar 

  47. ReetuKumar V (2012) Computer aided drug design of selective calcium channel blockers: using pharmacophore based and docking simulations. Int J Pharm Sci Res 3:805–810

    Google Scholar 

  48. Li J, Abel R, Zhu K, Cao Y, Zhao S, Friesner RA (2011) The VSGB 2.0 Model: a next generation energy model for high resolution protein structure modeling. Proteins 79:2794–2812

  49. Koca J, Zhan CG, Rittenhouse RC, Ornstein RL (2003) Coordination number of zinc ions in the phosphodiesterase active site by molecular dynamics and quantum mechanics. J Comput Chem 24:368–378

    Article  CAS  Google Scholar 

  50. Berendsen HJC, Postma JPM, Van Gunsteren WF, Dinola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

  51. Essmann U, Perera L, Berkowit ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  52. Goto T, Shiina A, Yoshino T, Mizukami K, Hirahara K, Suzuki O, Sogawa Y, Takahashi T, Mikkaichi T, Nakao N, Takahashi M, Hasegawa M, Sasaki S (2013) Identification of the fused bicyclic 4-amino-2-phenylpyrimidine. Bioorg Med Chem Lett 23:3325–3328

    Article  CAS  Google Scholar 

  53. Xu RX, Hassell AM, Vanderwall D, Lambert MH, Holmes WD, Luther MA, Rocque WJ, Milburn MV, Zhao Y, Ke H, Nolte RT (2000) Atomic structure of PDE4: insights into phosphodiesterase mechanism and specificity. Science 288:1822–1825

    Article  CAS  Google Scholar 

  54. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM-GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Science and Engineering Research Board (SERB), Government of India for the financial support (No. SR/SO/HS-0264/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Afzal Azam.

Ethics declarations

Disclosure

The authors declare no conflict of interest in this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2782 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripuraneni, N.S., Azam, M.A. Pharmacophore modeling, 3D-QSAR, and docking study of pyrozolo[1,5-a]pyridine/4,4-dimethylpyrazolone analogues as PDE4 selective inhibitors. J Mol Model 21, 289 (2015). https://doi.org/10.1007/s00894-015-2837-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2837-4

Keywords

Navigation