Skip to main content
Log in

Comparative study of small boron, silicon and germanium clusters: BmSin and BmGen (m + n = 2–4)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Chemically speaking, atomic clusters are very rich, allowing their application in a broad range of technological areas such as developing functional materials, heterogeneous catalysis, and building optical devices. In this work, high level computational chemistry methods were used in a systematic manner to improve the characterization of small clusters formed by boron, silicon, germanium, mixed boron/silicon, and mixed boron/germanium. Calculations were carried out with both ab initio [MP2 and CCSD(T)] and density functional (B3LYP) methods with extended basis sets. The CCSD(T) results were then extrapolated to the complete basis set (CBS) limit. Finally, geometrical parameters, vibrational frequencies, and relative energies were then obtained and compared to data presented in the literature.

Small boron, silicon and germanium clusters: BmSin and BmGen (m + n = 2–4)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Teixidor F, Viñas C, Demonceau A, Nuñez R (2003) Boron clusters: do they receive the deserved interest? Pure Appl Chem 75:1305–1313. doi:10.1351/pac200375091305

    Article  CAS  Google Scholar 

  2. Endo Y, Yoshimi T, Miyaura C (2003) Boron clusters for medicinal drug design: selective estrogen receptor modulators bearing carborane. Pure Appl Chem 75:1197–1205. doi:10.1351/pac200375091197

    Article  CAS  Google Scholar 

  3. Truong BT, Grant DJ, Nguyen MT, Dixon DA (2010) Thermochemistry and electronic structure of small boron clusters (B(n), n = 5–13) and their anions. J Phys Chem A 114:994–1007. doi:10.1021/jp9085848

    Article  Google Scholar 

  4. Oger E, Crawford NRM, Kelting R et al (2007) Boron cluster cations: transition from planar to cylindrical structures. Angew Chem Int Ed Engl 46:8503–6. doi:10.1002/anie.200701915

    Article  CAS  Google Scholar 

  5. Reis H, Papadopoulos MG (1999) Nonlinear optical properties of the rhombic B4-cluster. J Comput Chem 20:679–687. doi:10.1002/(SICI)1096-987X(199905)20:7<679::AID-JCC3>3.0.CO;2-G

    Article  CAS  Google Scholar 

  6. Zhai H-J, Zhao Y-F, Li W-L et al (2014) Observation of an all-boron fullerene. Nat Chem 6:727–31. doi:10.1038/nchem.1999

    CAS  Google Scholar 

  7. Zhai H, Wang L, Alexandrova AN et al (2003) Photoelectron spectroscopy and ab initio study of B3 and B4 anions and their neutrals. J Phys Chem A 107:9319–9328. doi:10.1021/jp0357119

    Article  CAS  Google Scholar 

  8. Batalov A, Fulara J, Shnitko I, Maier JP (2005) The near infrared electronic transition of B3 in a neon matrix. Chem Phys Lett 404:315–317. doi:10.1016/j.cplett.2005.01.081

    Article  CAS  Google Scholar 

  9. Xu S-J, Nilles JM, Radisic D et al (2003) Boron cluster anions containing multiple B12 icosahedra. Chem Phys Lett 379:282–286. doi:10.1016/j.cplett.2003.07.020

    Article  CAS  Google Scholar 

  10. Miliordos E, Mavridis A (2010) An accurate first principles study of the geometric and electronic structure of B2, B2 , B3, B3 , and B3H: ground and excited states. J Chem Phys 132:164307. doi:10.1063/1.3389133

    Article  Google Scholar 

  11. Atiş M, Özdoğan C, Güvenç ZB (2007) Structure and energetic of Bn (n = 2–12) clusters: electronic structure calculations. Int J Quantum Chem 107:729–744. doi:10.1002/qua.21171

    Article  Google Scholar 

  12. Boustani I (1997) Systematic ab initio investigation of bare boron clusters: determination of the geometry and electronic structures of Bn (n = 2–14). Phys Rev B 55:16426–16438. doi:10.1103/PhysRevB.55.16426

    Article  CAS  Google Scholar 

  13. Wei Jin H, Shu Li Q (2003) Structure and stability of B4, B4 + and B4 clusters. Phys Chem Chem Phys 5:1110–1115. doi:10.1039/b209215h

    Article  Google Scholar 

  14. Yang C, Zhu Z, Wang R, Liu X (2001) Analytical potential energy functions of the neutral and cationic B2. J Mol Struct THEOCHEM 548:47–52. doi:10.1016/S0166-1280(01)00372-4

    Article  CAS  Google Scholar 

  15. Hernandez R, Simons J (1991) Electronic energies, geometries, and vibrational frequencies of the ground and low-lying excited states of the boron trimer. J Chem Phys 94:2961. doi:10.1063/1.459819

    Article  CAS  Google Scholar 

  16. Nguyen MT, Matus MH, Ngan VT et al (2009) Thermochemistry and electronic structure of small boron and boron oxide clusters and their anions. J Phys Chem A 113:4895–909. doi:10.1021/jp811391v

    Article  CAS  Google Scholar 

  17. Niu J, Rao BK, Jena P (1997) Atomic and electronic structures of neutral and charged boron and boron-rich clusters. J Chem Phys 107:132. doi:10.1063/1.474360

    Article  CAS  Google Scholar 

  18. Tzeli D, Mavridis A (2005) Ab initio investigation of the electronic and geometric structure of magnesium diboride, MgB2. J Phys Chem A 109:10663–74. doi:10.1021/jp058172b

    Article  CAS  Google Scholar 

  19. Müller T, Dallos M, Lischka H et al (2001) A systematic theoretical investigation of the valence excited states of the diatomic molecules B2, C2, N2 and O2. Theor Chem Accounts Theory Comput Model (Theoretica Chim Acta) 105:227–243. doi:10.1007/s002140000210

    Google Scholar 

  20. Marchal R, Carbonnière P, Pouchan C (2009) A global search algorithm of minima exploration for the investigation of low lying isomers of clusters from density functional theory-based potential energy surfaces: the example of Sin (n = 3,15) as a test case. J Chem Phys 131:114105. doi:10.1063/1.3216382

    Article  Google Scholar 

  21. Marim L, Lemes M, Pino a D (2003) Neural-network-assisted genetic algorithm applied to silicon clusters. Phys Rev A 67:033203. doi:10.1103/PhysRevA.67.033203

    Article  Google Scholar 

  22. Yang J, Xu W, Xiao W (2005) The small silicon clusters Sin (n = 2–10) and their anions: structures, themochemistry, and electron affinities. J Mol Struct THEOCHEM 719:89–102. doi:10.1016/j.theochem.2004.12.035

    Article  CAS  Google Scholar 

  23. Zhao C, Balasubramanian K (2002) Geometries and spectroscopic properties of silicon clusters (Si5, Si5 +, Si5 , Si6, Si6 +, and Si6 . J Chem Phys 116:3690. doi:10.1063/1.1446027

    Article  CAS  Google Scholar 

  24. Feller D, Dixon DA (1999) Theoretical study of the heats of formation of small silicon-containing compounds. J Phys Chem A 103:6413–6419. doi:10.1021/jp990596g

    Article  CAS  Google Scholar 

  25. Li S, Van Zee RJ, Weltner W, Raghavachari K (1995) Si3 - Si7 experimental and theoretical infrared spectra. Chem Phys Lett 243:275–280. doi:10.1016/0009-2614(95)00836-S

    Article  CAS  Google Scholar 

  26. Lan Y-Z, Feng Y-L, Wen Y-H, Teng B-T (2008) Absorption spectra and frequency-dependent polarizabilities of small silicon clusters: a density functional study. J Mol Struct THEOCHEM 854:63–69. doi:10.1016/j.theochem.2007.12.029

    Article  CAS  Google Scholar 

  27. Lan Y-Z, Feng Y-L, Wen Y-H, Teng B-T (2008) Dynamic second-order hyperpolarizabilities of Si3 and Si4 clusters using coupled cluster cubic response theory. Chem Phys Lett 461:118–121. doi:10.1016/j.cplett.2008.07.006

    Article  CAS  Google Scholar 

  28. Lyon JT, Gruene P, Fielicke A et al (2009) Structures of silicon cluster cations in the gas phase. J Am Chem Soc 131:1115–21. doi:10.1021/ja807518y

    Article  CAS  Google Scholar 

  29. Achiba Y, Kohno M, Ohara M et al (2005) Electron detachment spectroscopic study on carbon and silicon cluster anions. J Electron Spectrosc Relat Phenom 142:231–240. doi:10.1016/j.elspec.2004.09.016

    Article  CAS  Google Scholar 

  30. Peppernick SJ, Gunaratne KDD, Sayres SG, Castleman a W (2010) Photoelectron imaging of small silicon cluster anions, Sin (n = 2-7). J Chem Phys 132:044302. doi:10.1063/1.3299271

    Article  Google Scholar 

  31. Li B, Cao P, Zhou X (2003) Electronic and geometric structures of Sin and Sin + (n = 2–10) clusters and in comparison with Sin. Phys Status Solidi 238:11–19. doi:10.1002/pssb.200301624

    Article  CAS  Google Scholar 

  32. Nigam S, Majumder C, Kulshreshtha SK (2006) Structural and electronic properties of Sin, Sin , and PSi(n-1) clusters (2 < or = n < or = 13): Theoretical investigation based on ab initio molecular orbital theory. J Chem Phys 125:074303. doi:10.1063/1.2244569

    Article  Google Scholar 

  33. Shi D, Liu H, Sun J et al (2011) Spectroscopic and molecular properties of 14 selected electronic states of Si2 molecule. J Quant Spectrosc Radiat Transf 112:2567–2583. doi:10.1016/j.jqsrt.2011.07.007

    Article  CAS  Google Scholar 

  34. Curtiss LA, Deutsch PW, Raghavachari K (1992) Binding energies and electron affinities of small silicon clusters (n = 2–5). J Chem Phys 96:6868. doi:10.1063/1.462577

    Article  CAS  Google Scholar 

  35. Jackson K, Pederson MR, Porezag D et al (1997) Density-functional-based predictions of raman and IR spectra for small Si clusters. Phys Rev B 55:2549–2555. doi:10.1103/PhysRevB.55.2549

    Article  CAS  Google Scholar 

  36. Hayward JA, Hughes JM, Von Nagy-Felsobuki EI, Alderidge LP (1997) Rovibrational states of the 1A1 ground electronic state of Si3. Mol Phys 92:177–186. doi:10.1080/002689797170383

    CAS  Google Scholar 

  37. Ballato J, Hawkins T, Foy P et al (2009) Glass-clad single-crystal germanium optical fiber. Opt Express 17:8029. doi:10.1364/OE.17.008029

    Article  CAS  Google Scholar 

  38. Herrmannsdörfer T, Heera V, Ignatchik O et al (2009) Superconducting state in a gallium-doped germanium layer at low temperatures. Phys Rev Lett 102:217003. doi:10.1103/PhysRevLett.102.217003

    Article  Google Scholar 

  39. Xu W, Zhao Y, Li Q et al (2004) The germanium clusters Gen (n = 1–6) and their anions: structures, thermochemistry and electron affinities. Mol Phys 102:579–598. doi:10.1080/00268970410001672755

    Article  CAS  Google Scholar 

  40. Deutsch PW, Curtiss LA, Blaudeau J-P (2001) Electron affinities of germanium anion clusters, Gen (n = 2–5). Chem Phys Lett 344:101–106. doi:10.1016/S0009-2614(01)00734-5

    Article  CAS  Google Scholar 

  41. King RB, Silaghi-Dumitrescu I, Kun A (2002) A density functional theory study of five-, six- and seven-atom germanium clusters: distortions from ideal bipyramidal deltahedra in hypoelectronic structures. J Chem Soc Dalt Trans 3999–4004. doi:10.1039/b206345j

  42. King RB, Silaghi-Dumitrescu I, Uţa MM (2006) Density functional theory study of 10-atom germanium clusters: effect of electron count on cluster geometry. Inorg Chem 45:4974–81. doi:10.1021/ic051905m

    Article  CAS  Google Scholar 

  43. Gingerich KA, Schmude RW, Sai Baba M, Meloni G (2000) Atomization enthalpies and enthalpies of formation of the germanium clusters, Ge5, Ge6, Ge7, and Ge8 by Knudsen effusion mass spectrometry. J Chem Phys 112:7443. doi:10.1063/1.481343

    Article  CAS  Google Scholar 

  44. Yoshida S, Fuke K (1999) Photoionization studies of germanium and tin clusters in the energy region of 5.0–8.8 eV: Ionization potentials for Gen (n = 2–57) and Snn (n = 2–41). J Chem Phys 111:3880. doi:10.1063/1.479691

    Article  CAS  Google Scholar 

  45. Uppal S, Willoughby AFW, Bonar JM et al (2004) Diffusion of boron in germanium at 800–900 °C. J Appl Phys 96:1376. doi:10.1063/1.1766090

    Article  CAS  Google Scholar 

  46. Davy R, Skoumbourdis E, Dinsmore D (2005) Structure, energies, vibrational spectra and reactions of the boron–silicon cluster molecules B2Si, BSi2 and B2Si2. Mol Phys 103:611–619. doi:10.1080/00268970512331316012

    Article  CAS  Google Scholar 

  47. Li X, Wang H, Grubisic A et al (2008) Heteroborane analogs of silicon clusters: experimental and theoretical studies on Bi2Si5 and Bi2Si5 . J Chem Phys 129:134309. doi:10.1063/1.2988727

    Article  Google Scholar 

  48. Sun Z, Yang Z, Gao Z, Tang Z (2007) Experimental and theoretical investigation on binary semiconductor clusters of B/Si and Al/Si. Rapid Commun Mass Spectrom 21:792–798. doi:10.1002/rcm.2906

    Article  CAS  Google Scholar 

  49. Cojocaru-Mirédin O, Mangelinck D, Blavette D (2009) Nucleation of boron clusters in implanted silicon. J Appl Phys 106:113525. doi:10.1063/1.3265998

    Article  Google Scholar 

  50. De Salvador D, Bisognin G, Di Marino M et al (2008) B clustering in amorphous Si. J Vac Sci Technol B Microelectron Nanom Struct 26:382. doi:10.1116/1.2781760

    Article  Google Scholar 

  51. Janke C, Jones R, Coutinho J et al (2008) Ab initio investigation of phosphorus and boron diffusion in germanium. Mater Sci Semicond Process 11:324–327. doi:10.1016/j.mssp.2008.07.002

    Article  CAS  Google Scholar 

  52. Sansores LE, Valladares AA (1995) Amorphous clusters: the electronic structure of Ge clusters with B and Al impurities. J Non-Cryst Solids 191:227–237. doi:10.1016/0022-3093(95)00278-2

    Article  CAS  Google Scholar 

  53. Impellizzeri G, Mirabella S, Bruno E et al (2009) B activation and clustering in ion-implanted Ge. J Appl Phys 105:063533. doi:10.1063/1.3091289

    Article  Google Scholar 

  54. Bisognin G, Vangelista S, Berti M et al (2010) Substitutional and clustered B in ion implanted Ge: strain determination. J Appl Phys 107:103512. doi:10.1063/1.3427563

    Article  Google Scholar 

  55. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622. doi:10.1103/PhysRev.46.618

    Article  Google Scholar 

  56. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627. doi:10.1021/j100096a001

    Article  CAS  Google Scholar 

  57. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) A fifth-order perturbation comparison of electron correlation theories. Chem Phys Lett 157:479–483. doi:10.1016/S0009-2614(89)87395-6

    Article  CAS  Google Scholar 

  58. Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09 Revision D.01.

  59. Werner H-J, Knowles PJ, Knizia G et al (2012) Molpro: a general-purpose quantum chemistry program package. Wiley Interdiscip Rev: Comput Mol Sci 2:242–253. doi:10.1002/wcms.82

    CAS  Google Scholar 

  60. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007. doi:10.1063/1.456153

    Article  CAS  Google Scholar 

  61. Woon DE, Dunning TH (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98:1358. doi:10.1063/1.464303

    Article  CAS  Google Scholar 

  62. Wilson AK, Woon DE, Peterson KA, Dunning TH (1999) Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. J Chem Phys 110:7667. doi:10.1063/1.478678

    Article  CAS  Google Scholar 

  63. Halkier A, Helgaker T, Jørgensen P et al (1998) Basis-set convergence in correlated calculations on Ne, N2, and H2O. Chem Phys Lett 286:243–252. doi:10.1016/S0009-2614(98)00111-0

    Article  CAS  Google Scholar 

  64. Lee T, Taylor P (1989) A diagnostic for determining the quality of single reference electron correlation methods. Int J Quantum Chem 36:199–207. doi:10.1002/qua.560360824

    Article  Google Scholar 

  65. Rienstra-Kiracofe JC, Allen WD, Schaefer HF (2000) The C2H5 + O2 reaction mechanism: high-level ab initio characterizations. J Phys Chem A 104:9823–9840. doi:10.1021/jp001041k

    Article  CAS  Google Scholar 

  66. Huber KP, Herzberg G (1979) Constants of diatomic molecules. Molecular spectra and molecular structure, vol IV. Van Nostrand Reinhold, New York

  67. Bredohl H, Dubois I, Nzohabonayo P (1982) The emission spectrum of B2. J Mol Spectrosc 93:281–285. doi:10.1016/0022-2852(82)90168-0

    Article  CAS  Google Scholar 

  68. Bredohl H, Dubois I, Mélen F (1987) Excited vibrational levels of the ground state of B2: The A3Σu -X3Σg transition. J Mol Spectrosc 121:128–134. doi:10.1016/0022-2852(87)90175-5

    Article  CAS  Google Scholar 

  69. Brazier CR, Carrick PG (1992) Observation of several new electronic transitions of the B2 molecule. J Chem Phys 96:8684. doi:10.1063/1.462275

    Article  CAS  Google Scholar 

  70. Peterson KA, Dunning TH (2002) Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited. J Chem Phys 117:10548. doi:10.1063/1.1520138

    Article  CAS  Google Scholar 

  71. Verma RD, Warsop PA (1963) Absorption Spectrum of Si2 Molecule. Can J Phys 41:152–&.

  72. Nimlos MR, Harding LB, Ellison GB (1987) The electronic states of Si2 and Si2 as revealed by photoelectron spectroscopy. J Chem Phys 87:5116. doi:10.1063/1.453679

    Article  CAS  Google Scholar 

  73. Kitsopoulos TN, Chick CJ, Zhao Y, Neumark DM (1991) Study of the low-lying electronic states of Si2 and Si2 using negative ion photodetachment techniques. J Chem Phys 95:1441. doi:10.1063/1.461057

    Article  CAS  Google Scholar 

  74. Yanagisawa S, Nakajima T, Tsuneda T, Hirao K (2001) The relativistic effect on energies of light elements: a RESC-BOP study. J Mol Struct THEOCHEM 537:63–70. doi:10.1016/S0166-1280(00)00662-X

    Article  CAS  Google Scholar 

  75. Jacox ME (1994) Vibrational and electronic-energy levels of polyatomic transient molecules. J Phys Chem Ref DATA 1–461

  76. Archibong EF, St-Amant A (1998) A study of Gen and Gen (n = 2–6) using B3LYP-DFT and CCSD(T) methods: The structures and electron affinities of small germanium clusters. J Chem Phys 109:962. doi:10.1063/1.476639

    Article  CAS  Google Scholar 

  77. Deutsch PW, Curtiss LA, Blaudeau JP (1997) Binding energies of germanium clusters, Gen (n = 2–5). Chem Phys Lett 270:413–418. doi:10.1016/S0009-2614(97)00398-9

    Article  CAS  Google Scholar 

  78. Hostutler DA, Li H, Clouthier DJ, Wannous G (2002) Exploring the Bermuda triangle of homonuclear diatomic spectroscopy: the electronic spectrum and structure of Ge2. J Chem Phys 116:4135. doi:10.1063/1.1431281

    Article  CAS  Google Scholar 

  79. Froben FW, Schulze W (1985) Matrix-isolation spectroscopy of germanium molecules. Surf Sci 156:765–769. doi:10.1016/0039-6028(85)90247-X

    Article  CAS  Google Scholar 

  80. Arnold CC, Xu C, Burton GR, Neumark DM (1995) Study of the low-lying states of Ge2 and Ge2 using negative ion zero electron kinetic energy spectroscopy. J Chem Phys 102:6982. doi:10.1063/1.469091

    Article  CAS  Google Scholar 

  81. Balasubramanian K (1987) Relativistic quantum calculations of spectroscopic properties of Ge2. J Mol Spectrosc 123:228–236. doi:10.1016/0022-2852(87)90272-4

    Article  CAS  Google Scholar 

  82. Ornellas FR, Iwata S (1997) A theoretical study of the electronic structure and spectroscopic properties of the low-lying electronic states of the molecule SiB. J Chem Phys 107:6782. doi:10.1063/1.474920

    Article  CAS  Google Scholar 

  83. De Oliveira MH, Pontes MAP, Da Motta Neto JD et al (2014) An MRCI characterization of the low-lying electronic states of the GeB molecule. Chem Phys Lett 601:26–32. doi:10.1016/j.cplett.2014.03.078

    Article  Google Scholar 

  84. Boldyrev AI, Simons J (1993) Diatomic molecules containing electropositive atoms favor high-spin states. J Phys Chem 97:1526–1532. doi:10.1021/j100110a012

    Article  CAS  Google Scholar 

  85. Oyedepo GA, Peterson C, Wilson AK (2011) Accurate predictions of the energetics of silicon compounds using the multireference correlation consistent composite approach. J Chem Phys 135:094103. doi:10.1063/1.3626838

    Article  Google Scholar 

  86. Martin JML, François JP, Gijbels R (1992) Potential energy surface of B4 and total atomization energies of B2, B3, and B4. Chem Phys Lett 189:529–536. doi:10.1016/0009-2614(92)85245-6

    Article  CAS  Google Scholar 

  87. Hanley L, Whitten JL, Anderson SL (1988) Collision-induced dissociation and ab initio studies of boron cluster ions: determination of structures and stabilities. J Phys Chem 92:5803–5812. doi:10.1021/j100331a052

    Article  CAS  Google Scholar 

  88. Li S, Van Zee RJ, Weltner W (1996) Infrared observations of the B3 and Al3 molecules in inert-gas matrices at 4 K. Chem Phys Lett 262:298–302. doi:10.1016/0009-2614(96)01094-9

    Article  CAS  Google Scholar 

  89. Ueno LT, Kiohara VO, Ferrão LFA et al (2011) Theoretical study of the GemSin (m + n = 3) clusters. Int J Quantum Chem 111:1562–1569. doi:10.1002/qua.22747

    Article  CAS  Google Scholar 

  90. McCarthy M, Thaddeus P (2003) Rotational spectrum and structure of Si3. Phys Rev Lett 90:213003. doi:10.1103/PhysRevLett.90.213003

    Article  CAS  Google Scholar 

  91. Arnold CC, Neumark DM (1994) Threshold photodetachment zero-electron kinetic energy spectroscopy of Si3 . J Chem Phys 100:1797. doi:10.1063/1.466532

    Article  CAS  Google Scholar 

  92. Dixon DA, Gole JL (1992) The electronic structure of Si3 and Ge3 in the local density functional approximation. Chem Phys Lett 188:560–564. doi:10.1016/0009-2614(92)80866-A

    Article  CAS  Google Scholar 

  93. Wang J, Wang G, Zhao J (2001) Structure and electronic properties of Gen (n = 2–25) clusters from density-functional theory. Phys Rev B 64:205411. doi:10.1103/PhysRevB.64.205411

    Article  Google Scholar 

  94. Dai D, Sumathi K, Balasubramanian K (1992) Eight electronic states and potential energy surfaces of Ge3. Chem Phys Lett 193:251–257. doi:10.1016/0009-2614(92)85663-U

    Article  CAS  Google Scholar 

  95. Jackson P, Fisher KJ, Gadd GE et al (1997) The gas phase reactivity and theoretical structures of germanium ions generated by direct laser vaporisation. Int J Mass Spectrom Ion Process 164:45–69. doi:10.1016/S0168-1176(97)00056-6

    Article  CAS  Google Scholar 

  96. Xu C, Taylor TR, Burton GR, Neumark DM (1998) Vibrationally resolved photoelectron spectroscopy of silicon cluster anions Sin (n = 3–7). J Chem Phys 108:1395. doi:10.1063/1.475511

    Article  CAS  Google Scholar 

  97. Viswanathan R, Schmude RW, Gingerich KA (1996) Thermochemistry of BSi(g), BSi2(g), and BSi3(g). J Phys Chem 100:10784–10786. doi:10.1021/jp9602742

    Article  CAS  Google Scholar 

  98. Weast RC, Selby SM (1968) CRC Handbook of chemistry and physics, 49th edn, Chemical Rubber Company, Cleveland, pp D87− D89

Download references

Acknowledgments

The authors acknowledge the continuous research and fellowship support of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). We also wish to thank Dr. Corey A. Petty for his kind attention in revising this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco B. C. Machado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueno, L.T., Kiohara, V.O., Ferrão, L.F.A. et al. Comparative study of small boron, silicon and germanium clusters: BmSin and BmGen (m + n = 2–4). J Mol Model 21, 141 (2015). https://doi.org/10.1007/s00894-015-2685-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2685-2

Keywords

Navigation