Skip to main content
Log in

The mechanism of Menshutkin reaction in gas and solvent phases from the perspective of reaction electronic flux

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The mechanism of Menshutkin reaction, NH3 + CH3Cl = [CH3–NH3]+ + Cl-, has been thoroughly studied in both gas and solvent (H2O and cyclohexane) phase. It has been found that solvents favor the reaction, both thermodynamically and kinetically. The electronic activity that drives the mechanism of the reaction was identified, fully characterized, and associated to specific chemical events, bond forming/breaking processes, by means of the reaction electronic flux. This led to a complete picture of the reaction mechanism that was independently confirmed by natural bond-order analysis and the dual descriptor for chemical reactivity and selectivity along the reaction path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Menshutkin NA (1890) Z Phys Chem 6:41

    Google Scholar 

  2. Menshutkin N (1890) Z Phys Chem 5:589

    Google Scholar 

  3. Abboud JLM, Notario R, Bertran J, Solá M (1993) In onlinelibrary.wiley.com; Progress in Physical Organic Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA; Vol. 19, pp. 1–182

  4. Pedley JB. Thermochemical data and structures of organic compounds, 18 ed. worldcat.org: College Station, TX, USA

  5. Viers JW, Schug JC, Stovall MD, Seeman JIJ (1984) Comput Chem 5:598–605

    Article  CAS  Google Scholar 

  6. Chandrasekhar J, Jorgensen WL (1985) J Am Chem Soc 107:2974

    Article  CAS  Google Scholar 

  7. Solà M, Lledós A, Duran M, Bertran J, Abboud JLMJ (1991) J Am Chem Soc 113:2873–2879

    Article  Google Scholar 

  8. Gao J (1991) J Am Chem Soc

  9. Maran U, Pakkanen TA, Karelson MJ (1994) Chem Soc Perkin Trans 2:2445–2452

    Article  Google Scholar 

  10. Shaik S, Ioffe A, Reddy AC, Pross AJ (1994) J Am Chem Soc 116:262–273

    Article  CAS  Google Scholar 

  11. Fradera X, Amat L, Torrent M, Mestres J, Constans P, Besalú E, Martí J, Simon S, Lobato M, Oliva JM, Luis JM, Andrés JL, Solá M, Carbó R, Duran M (1996) J Mol Struct (THEOCHEM) 371:171–183

    Article  CAS  Google Scholar 

  12. Truong TN, Truong T-TT, Stefanovich EV (1997) J Chem Phys 107:1881–1889

    Article  CAS  Google Scholar 

  13. Amovilli C, Mennucci B, Floris FMJ (1998) Phys Chem B 102:3023–3028

    Article  CAS  Google Scholar 

  14. Melo A, Alfaia AJ, Reis JCR, Calado ARJ (2006) Phys Chem B 110:1877–1888

    Article  CAS  Google Scholar 

  15. Cox HE (1921) J Chem Soc Trans 119, 142

  16. Grimm HG, Ruford H, Wolff H (1931) Z Physik Chem 1353

  17. Pickles NJT, Hinshelwood CN (1936) J Chem Soc B 1353

  18. Raine HC, Hinshelwood CN (1939) J Chem Soc 1378

  19. Tommila E, Murto ML (1963) Acta Chem Scand

  20. Arnett EM, Reich RJ (1980) Am Chem Soc 102:5892–5902

    Article  CAS  Google Scholar 

  21. Jay AN, Daniel KA, Patterson EVJ (2007) Chem Theory Comput 3:336–343

    Article  CAS  Google Scholar 

  22. Bulat FA, Toro-Labbé A (2003) J Phys Chem A 107:3987–3994

    Article  CAS  Google Scholar 

  23. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094

    Article  CAS  Google Scholar 

  24. Toro-Labbé A (1999) J Phys Chem A 103:4398–4403

    Article  Google Scholar 

  25. Gutiérrez-Oliva S, Herrera B, Toro-Labbé A, Chermette H (2005) J Phys Chem A 109:1748–1751

    Article  Google Scholar 

  26. Herrera B, Toro-Labbé A (2007) J Phys Chem A 111:5921–5926

    Article  CAS  Google Scholar 

  27. Herrera B, Toro-Labbé A (2004) J Chem Phys 121:7096–7102

    Article  CAS  Google Scholar 

  28. Marcus RA (1964) Annu Rev Phys Chem 15:155–196

    Article  CAS  Google Scholar 

  29. Leffler JE (1953) Science 117:340–341

    Article  CAS  Google Scholar 

  30. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  31. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793

    Article  CAS  Google Scholar 

  32. Anderson JSM, Melin J, Ayers PWJ (2007) Chem Theory Comput 3:358–374

    Article  CAS  Google Scholar 

  33. Wu Q, Ayers PW, Yang W (2003) J Chem Phys 119:2978

    Article  CAS  Google Scholar 

  34. Ayers PW, Parr RG, Pearson RG (2006) J Chem Phys 124:194107

    Article  Google Scholar 

  35. Johnson PA, Solà M, Bartolotti LJ, Solà M, Ayers PW, Lledós A, Fievez T, Lledós A, Duran M, Bertran J, Abboud JLM (2012) Vol. 1, pp. 715–764

  36. Bartolotti LJ, Ayers PW (2005) J Phys Chem A 109:1146–1151

    Article  CAS  Google Scholar 

  37. Morell C, Grand A, e AT-L (2005) J Phys Chem A 109, 205

  38. Morell C, Grand A, Toro-Labbé A (2006) Chem Phys Lett 425:342–346

    Article  CAS  Google Scholar 

  39. Ayers PW, Morell C, De Proft F, Geerlings P (2007) Chem Eur J 13:8240–8247

    Article  CAS  Google Scholar 

  40. Morel C, Grand A, Gutierrez-Oliva S, Toro-Labbé A. In Theoretical Aspects of Chemical Reactivity; Toro-Labbé A (ed) Elsevier, Oxford, pp 101–117

  41. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  42. Echegaray E, Gutierrez-Oliva S, Herrera B (2011) Science China

  43. Duarte F, Toro-Labbé A (2010) Mol Phys 108:1375–1384

    Article  CAS  Google Scholar 

  44. Fukui K (1970) J Phys Chem 74:4161–4163

    Article  CAS  Google Scholar 

  45. Fukui K (1981) Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  46. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  47. Hratchian HP, Nelson KV, Viers JW, Schlegel HB, Benjamin I, Viers JW, Schug JC, Schug JC, Stovall MD, Stovall MD, Seeman JI, Seeman JI (2004) J Chem Phys 120:9918

    Article  CAS  Google Scholar 

  48. Hratchian HP, Schlegel HBJ (2005) Chem Theory Comput 1:61–69

    Article  CAS  Google Scholar 

  49. Toro-Labbé A, Gutiérrez-Oliva S, Murray JS, Politzer P (2008) J Mol Model 15:707–710

    Article  Google Scholar 

  50. Politzer P, Toro-Labbé A, Gutiérrez-Oliva S, Herrera B, Jaque P, Concha MC, Murray JS (2005) J Chem Sci 117:467–472

    Article  CAS  Google Scholar 

  51. Echegaray E, Toro-Labbé A (2008) J Phys Chem A 112:11801–11807

    Article  CAS  Google Scholar 

  52. Vogt-Geisse S, Toro-Labbé A (2009) J Chem Phys 130:244308

    Article  Google Scholar 

  53. Rincón E, Jaque P, Toro-Labbé A (2006) J Phys Chem A 110:9478–9485

    Article  Google Scholar 

  54. Politzer P, Burda JV, Concha MC, Lane P, Murray JS (2006) J Phys Chem A 110:756–761

    Article  CAS  Google Scholar 

  55. Sen KD, Jorgensen CK (1987) Electronegativity: structure and bonding, vol 66. Springer Verlag, Berlin

    Book  Google Scholar 

  56. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801

    Article  CAS  Google Scholar 

  57. Koopmans T (1934) Physica 1:104–113

    Article  Google Scholar 

  58. Parr RG, Yang WJ (1984) Am Chem Soc 106:4049–4050

    Article  CAS  Google Scholar 

  59. Morell C, Grand A, Toro-Labbé A (2005) J Phys Chem A 109:205–212

    Article  CAS  Google Scholar 

  60. Zhao Y, Truhlar DGJ (2006) Chem Theory Comput 2:1009–1018

    Article  CAS  Google Scholar 

  61. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Frisch H, Trucks MJ, Schlegel GW, Scuseria HB, Robb GE, Cheeseman MA, Scalmani JR, Barone G, Mennucci V, Petersson B, Nakatsuji GA, Caricato H, Li M, Hratchian X, Izmaylov HP, Bloino AF, Zheng J, Sonnenberg G, Hada JL, Ehara M, Toyota M, Fukuda K, Hasegawa R, Ishida J, Nakajima M, Honda T, Kitao Y, Nakai O, Vreven H, Montgomery TJ, Peralta JA, Ogliaro JE, Bearpark F, Heyd M, Brothers JJ, Kudin E, Staroverov KN, Kobayashi VN, Normand R, Raghavachari J, Rendell K, Burant A, Iyengar JC, Tomasi SS, Cossi J, Rega M, Millam N, Klene JM, Knox M, Cross JE, Bakken JB, Adamo V, Jaramillo C, Gomperts J, Stratmann R, Yazyev RE, Austin O, Cammi AJ, Pomelli R, Ochterski C, Martin JW, Morokuma RL, Zakrzewski K, Voth VG, Salvador GA, Dannenberg P, Dapprich JJ, Daniels S, Farkas AD, Foresman Ö, Ortiz JB, Cioslowski JV, Fox J (2009) Gaussian 09, 1st edn. Gaussian Inc, Wallingford

    Google Scholar 

Download references

Acknowledgments

This work was supported by FONDECYT through projects N°1120093 and N°1130072. The authors acknowledge financial support from ICM through project N° 120082 S. RIR wishes to thank CONICYT for Doctoral and Apoyo de Tesis Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bárbara Herrera.

Additional information

This paper belongs to Topical Collection QUITEL 2013

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, S., Inostroza-Rivera, R., Herrera, B. et al. The mechanism of Menshutkin reaction in gas and solvent phases from the perspective of reaction electronic flux. J Mol Model 20, 2353 (2014). https://doi.org/10.1007/s00894-014-2353-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2353-y

Keywords

Navigation