Skip to main content
Log in

Mechanism of AuCl3-catalyzed cyclization of 1-(Indol-2-yl)-3-alkyn-1-ols: a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A computational study with the B3LYP functional was carried out to elucidate the mechanisms of AuCl3- and AgOTf-catalyzed cyclization of 1-(indol-2-yl)-3-alkyn-1-ols. The theoretical studies suggested that the two main processes, cycloaddition and hydrogen-transfer, are included in all possible reaction pathways. Calculations revealed that AuCl3 is more effective in catalytic ability than AgOTf to catalyze the cyclization of 1-(indol-2-yl)-3-alkyn-1-ols into carbazole derivatives. More importantly, we found that the ligands of catalysts, Cl and OTf, are critical in a stepwise proton-transport process involved in intramolecular nucleophilic addition because they act as a proton shuttle to lower the activation free energy barrier of the rate-determining step. The theoretical discovery of the role of ligands of catalysts in hydrogen shift process suggests that AuCl3- and AgOTf-catalyzed cyclization of 1-(indol-2-yl)-3-alkyn-1-ols can be accelerated when ligands with the property of nucleophile are used. Our theoretical calculations reproduced the experimental results very well. The present study is expected to help understand other transition metal-catalyzed reactions and to give guidance for future design of new catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Laronze M, Boisbrun M, Léonce S, Pfeiffer B, Renard P, Lozach O, Meijer L, Lansiaux A, Bailly C, Sapi J (2005) Synthesis and anticancer activity of new pyrrolocarbazoles and pyrrolo-β-carbolines. Bioorg Med Chem 13(6):2263–2283

    Article  CAS  Google Scholar 

  2. Howard-Jones AR, Walsh CT (2006) Staurosporine and rebeccamycin aglycones are assembled by the oxidative action of StaP, StaC, and RebC on chromopyrrolic acid. J Am Chem Soc 128(37):12289–12298

    Article  CAS  Google Scholar 

  3. Cho SH, Yoon J, Chang S (2011) Intramolecular oxidative C−N bond formation for the synthesis of carbazoles: comparison of reactivity between the copper-catalyzed and metal-free conditions. J Am Chem Soc 133(15):5996–6005

    Article  CAS  Google Scholar 

  4. Justin Thomas K, Lin JT, Tao Y-T, Ko C-W (2001) Light-emitting carbazole derivatives: potential electroluminescent materials. J Am Chem Soc 123(38):9404–9411

    Article  Google Scholar 

  5. Huang J, Niu Y, Yang W, Mo Y, Yuan M, Cao Y (2002) Novel electroluminescent polymers derived from carbazole and benzothiadiazole. Macromol 35(16):6080–6082

    Article  CAS  Google Scholar 

  6. Sanda F, Nakai T, Kobayashi N, Masuda T (2004) Synthesis of polyacetylenes having pendant carbazole groups and their photo-and electroluminescence properties. Macromol 37(8):2703–2708

    Article  CAS  Google Scholar 

  7. Häussler M, Liu J, Zheng R, Lam JWY, Qin A, Tang BZ (2007) Synthesis, thermal stability, and linear and nonlinear optical properties of hyperbranched polyarylenes containing carbazole and/or fluorene moieties. Macromol 40(6):1914–1925

    Article  Google Scholar 

  8. Holmes R, Forrest S, Tung Y-J, Kwong R, Brown J, Garon S, Thompson M (2003) Blue organic electrophosphorescence using exothermic host–guest energy transfer. Appl Phys Lett 82(15):2422–2424

    Article  CAS  Google Scholar 

  9. Cai X, Padmaperuma AB, Sapochak LS, Vecchi PA, Burrows PE (2008) Electron and hole transport in a wide bandgap organic phosphine oxide for blue electrophosphorescence. Appl Phys Lett 92:083308

    Article  Google Scholar 

  10. Su S-J, Sasabe H, Takeda T, Kido J (2008) Pyridine-containing bipolar host materials for highly efficient blue phosphorescent OLEDs. Chem Mater 20(5):1691–1693

    Article  CAS  Google Scholar 

  11. Chou HH, Cheng CH (2010) A highly efficient universal bipolar host for blue, green, and red phosphorescent OLEDs. Adv Mater 22(22):2468–2471

    Article  CAS  Google Scholar 

  12. Marion N, Díez‐González S, de Frémont P, Noble AR, Nolan SP (2006) AuI‐catalyzed tandem [3, 3] rearrangement–intramolecular hydroarylation: mild and efficient formation of substituted indenes. Angew Chem 118(22):3729–3732

    Article  Google Scholar 

  13. Shen HC (2008) Recent advances in syntheses of heterocycles and carbocycles via homogeneous gold catalysis. Part 1: Heteroatom addition and hydroarylation reactions of alkynes, allenes, and alkenes. Tetrahedron 64(18):3885–3903

    Article  CAS  Google Scholar 

  14. Pastine SJ, Youn SW, Sames D (2003) PtIV-catalyzed cyclization of arene-alkyne substrates via intramolecular electrophilic hydroarylation. Org Lett 5(7):1055–1058

    Article  CAS  Google Scholar 

  15. Nevado C, Echavarren AM (2005) Intramolecular hydroarylation of alkynes catalyzed by platinum or gold: mechanism and endo selectivity. Chem Eur J 11(10):3155–3164

    Article  CAS  Google Scholar 

  16. Menon RS, Findlay AD, Bissember AC, Banwell MG (2009) The Au (I)-catalyzed intramolecular hydroarylation of terminal alkynes under mild conditions: application to the synthesis of 2 H-chromenes, coumarins, benzofurans, and dihydroquinolines. J Org Chem 74(22):8901–8903

    Article  CAS  Google Scholar 

  17. Schipper DJ, Hutchinson M, Fagnou K (2010) Rhodium (III)-catalyzed intermolecular hydroarylation of alkynes. J Am Chem Soc 132(20):6910–6911

    Article  CAS  Google Scholar 

  18. de Mendoza P, Echavarren AM (2013) Intramolecular hydroarylation of alkynes. Modern gold catalyzed synthesis. Wiley-VCH, Weinheim doi:10.1002/9783527646869.ch5

  19. Zhou W, Yang Y, Wang Z, Deng G-J (2014) Rhodium-catalyzed intermolecular hydroarylation of internal alkynes with N-1-phenylbenzotriazoles. Org Biomol Chem 12(2):251–254

    Article  CAS  Google Scholar 

  20. Qiu Y, Kong W, Fu C, Ma S (2012) Carbazoles via AuCl3-Catalyzed Cyclization of 1-(Indol-2-yl)-3-alkyn-1-ols. Org Lett 14(24):6198–6201

    Article  CAS  Google Scholar 

  21. Hashmi ASK, Yang W, Rominger F (2012) Gold (I)‐catalyzed rearrangement of 3‐silyloxy‐1, 5‐enynes: an efficient synthesis of benzo [b] thiophenes, dibenzothiophenes, dibenzofurans, and indole derivatives. Chem Eur J 18(21):6576–6580

    Article  CAS  Google Scholar 

  22. Hashmi ASK, Blanco MC, Fischer D, Bats JW (2006) Gold catalysis: evidence for the In‐situ reduction of gold (III) during the cyclization of allenyl carbinols. Eur J Org Chem 2006(6):1387–1389

    Article  Google Scholar 

  23. Kong W, Fu C, Ma S (2012) Efficient synthesis of carbazoles via PtCl2-catalyzed RT cyclization of 1-(indol-2-yl)-2, 3-allenols: scope and mechanism. Org Biomol Chem 10(10):2164–2173

    Article  CAS  Google Scholar 

  24. Hashmi ASK, Yang W, Rominger F (2011) Gold (I)‐catalyzed formation of benzo [b] furans from 3‐Silyloxy‐1, 5‐enynes. Angew Chem Int Ed 50(25):5762–5765

    Article  CAS  Google Scholar 

  25. Xia Y, Dudnik AS, Gevorgyan V, Li Y (2008) Mechanistic insights into the gold-catalyzed cycloisomerization of bromoallenyl ketones: ligand-controlled regioselectivity. J Am Chem Soc 130(22):6940–6941

    Article  CAS  Google Scholar 

  26. Zuccaccia D, Belpassi L, Tarantelli F, Macchioni A (2009) Ion pairing in cationic olefin − gold (I) complexes. J Am Chem Soc 131(9):3170–3171

    Article  CAS  Google Scholar 

  27. Brouwer C, He C (2006) Efficient gold‐catalyzed hydroamination of 1, 3‐dienes. Angew Chem 118(11):1776–1779

    Article  Google Scholar 

  28. Hamilton GL, Kang EJ, Mba M, Toste FD (2007) A powerful chiral counterion strategy for asymmetric transition metal catalysis. Science 317(5837):496–499

    Article  CAS  Google Scholar 

  29. Döpp R, Lothschütz C, Wurm T, Pernpointner M, Keller S, Rominger F, Hashmi ASK (2011) Gold catalysis: hydrolysis of di (alkoxy) carbenium ion intermediates as a sensor for the electronic properties of gold (I) complexes. Organomet 30(21):5894–5903

    Article  Google Scholar 

  30. Kong W, Fu C, Ma S (2009) An efficient synthesis of carbazoles from PtCl2-catalyzed cyclization of 1-(indol-2-yl)-2, 3-allenols. Chem Commun 30:4572–4574

    Article  Google Scholar 

  31. Alcaide B, Almendros P, Alonso JM, Fernández I (2012) Palladium-catalyzed carbocyclization–cross-coupling reactions of two different allenic moieties: synthesis of 3-(buta-1, 3-dienyl) carbazoles and mechanistic insights. Chem Commun 48(52):6604–6606

    Article  CAS  Google Scholar 

  32. Yao T, Zhang X, Larock RC (2004) AuCl3-catalyzed synthesis of highly substituted furans from 2-(1-alkynyl)-2-alken-1-ones. J Am Chem Soc 126(36):11164–11165

    Article  CAS  Google Scholar 

  33. Zhang J, Shen W, Li L, Li M (2009) Gold (I)-catalyzed cycloaddition of 1-(1-alkynyl) cyclopropyl ketones with nucleophiles to yield substituted furans: a DFT study. Organomet 28(11):3129–3139

    Article  CAS  Google Scholar 

  34. Hashmi ASK (2010) Homogeneous gold catalysis beyond assumptions and proposals—characterized intermediates. Angew Chem Int Ed 49(31):5232–5241

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Gonzalez C, Pople JA (2009) GAUSSIAN 09, revision C01. Gaussian Inc, Wallingford

  36. Becke AD (1993) Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  37. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785

    Article  CAS  Google Scholar 

  38. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650

    Article  CAS  Google Scholar 

  39. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299

    Article  CAS  Google Scholar 

  40. Wu Y-D, Yu Z-X (2001) A theoretical study on the mechanism and diastereoselectivity of the Kulinkovich hydroxycyclopropanation reaction. J Am Chem Soc 123(24):5777–5786

    Article  CAS  Google Scholar 

  41. Yu Z-X, Wender PA, Houk K (2004) On the mechanism of [Rh (CO) 2Cl] 2-catalyzed intermolecular (5+ 2) reactions between vinylcyclopropanes and alkynes. J Am Chem Soc 126(30):9154–9155

    Article  CAS  Google Scholar 

  42. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154

    Article  CAS  Google Scholar 

  43. Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94(14):5523–5527

    Article  CAS  Google Scholar 

  44. Barone V, Cossi M, Tomasi J (1998) Geometry optimization of molecular structures in solution by the polarizable continuum model. J Comput Chem 19(4):404–417

    Article  CAS  Google Scholar 

  45. Takano Y, Houk K (2005) Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J Chem Theor Comput 1(1):70–77

    Article  Google Scholar 

  46. Wiberg KB (1968) Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24(3):1083–1096

    Article  CAS  Google Scholar 

  47. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926

    Article  CAS  Google Scholar 

  48. Bader RF (1990) Atoms in molecules. Wiley Online Library

  49. Biegler-König F, Schönbohm J, Derdau R, Bayles D, Bader R (2002) AIM2000, version 2.0. McMaster University

  50. Biegler Konig F, Schonbohm J, Bayles D (2001) Software news and updates AIM2000. J Comput Chem 22:545–559

    Article  Google Scholar 

  51. Liu Y, Zhang D, Bi S, Liu C (2013) Theoretical investigation on Pt (ii)-and Au (i)-mediated cycloisomerizations of propargylic 3-indoleacetate:[3+ 2]-versus [2+ 2]-cycloaddition products. Org Biomol Chem 11(2):336–343

    Article  CAS  Google Scholar 

  52. Shaler TA, Borchardt D, Morton TH (1999) Competing 1, 3-and 1, 2-hydrogen shifts in gaseous fluoropropyl cations. J Am Chem Soc 121(34):7907–7913

    Article  CAS  Google Scholar 

  53. Vrček IV, Vrček V, Siehl H-U (2002) Quantum chemical study of degenerate hydride shifts in acyclic tertiary carbocations. J Phys Chem A 106(8):1604–1611

    Article  Google Scholar 

  54. Kraka E, Cremer D (2002) Mechanism and dynamics of organic reactions: 1, 2‐H shift in methylchlorocarbene. J Phys Org Chem 15(8):431–447

    Article  CAS  Google Scholar 

  55. Nishizawa M, Yadav A, Iwamoto Y, Imagawa H (2004) Experimental and theoretical approaches into the C-and D-ring problems of sterol biosynthesis. Hydride shift versus C–C bond migration due to cation conformational changes controlled by the counteranion. Tetrahedron 60(41):9223–9234

    Article  CAS  Google Scholar 

  56. Hayase S, Hrovat DA, Borden WT (2004) A B3LYP study of the effects of phenyl substituents on 1, 5-hydrogen shifts in 3-(Z)-1, 3-pentadiene provides evidence against a chameleonic transition structure. J Am Chem Soc 126(32):10028–10034

    Article  CAS  Google Scholar 

  57. Hess BA, Baldwin JE (2002) [1, 5] Sigmatropic hydrogen shifts in cyclic 1, 3-dienes. J Org Chem 67(17):6025–6033

    Article  CAS  Google Scholar 

  58. Lemière G, Gandon V, Agenet N, Goddard JP, de Kozak A, Aubert C, Fensterbank L, Malacria M (2006) Gold (I)‐and gold (III)‐catalyzed cycloisomerization of allenynes: a remarkable halide effect. Angew Chem 118(45):7758–7761

    Article  Google Scholar 

  59. Vrček V, Vinkovič Vrček I, Siehl H-U (2006) Quantum chemical study of solvent and substituent effects on the 1, 5-hydride shift in 2, 6-dimethyl-2-heptyl cations. J Phys Chem A 110(5):1868–1874

    Article  Google Scholar 

  60. Hashmi ASK, Braun I, Rudolph M, Rominger F (2012) The role of gold acetylides as a selectivity trigger and the importance of gem-diaurated species in the gold-catalyzed hydroarylating-aromatization of arene-diynes. Organomet 31(2):644–661

    Article  CAS  Google Scholar 

  61. Hashmi ASK, Wieteck M, Braun I, Noesel P, Jongbloed L, Rudolph M, Rominger F (2012) Gold‐catalyzed synthesis of dibenzopentalenes–evidence for gold vinylidenes. Adv Synth Catal 354(4):555–562

    Article  CAS  Google Scholar 

  62. Hashmi ASK, Braun I, Nösel P, Schädlich J, Wieteck M, Rudolph M, Rominger F (2012) Simple gold‐catalyzed synthesis of benzofulvenes—gem‐diaurated species as “instant dual‐activation” precatalysts. Angew Chem Int Ed 51(18):4456–4460

    Article  CAS  Google Scholar 

  63. Hashmi ASK, Wieteck M, Braun I, Rudolph M, Rominger F (2012) Gold vinylidene complexes: intermolecular C (sp3)-H insertions and cyclopropanations pathways. Angew Chem Int Ed 51(42):10633–10637

    Article  CAS  Google Scholar 

  64. Hansmann MM, Rudolph M, Rominger F, Hashmi ASK (2013) Mechanistic switch in dual gold catalysis of diynes: C (sp3)–H activation through bifurcation—vinylidene versus carbene pathways. Angew Chem Int Ed 52(9):2593–2598

    Article  CAS  Google Scholar 

  65. Norberg D, Larsson P-E, Salhi-Benachenhou N (2008) Rearrangement and hydrogen scrambling pathways of the toluene radical cation: a computational study. J Phys Chem A 112(20):4694–4702

    Article  CAS  Google Scholar 

  66. Benfatti F, Bottoni A, Cardillo G, Fabbroni S, Gentilucci L, Stenta M, Tolomelli A (2008) The cycloaddition reaction between α‐bromo vinylketenes and imines: a combined experimental and theoretical study. Adv Synth Catal 350(4‐15):2261–2273

    Article  CAS  Google Scholar 

  67. Krauter CM, Hashmi ASK, Pernpointner M (2010) A new insight into gold (I)‐catalyzed hydration of alkynes: proton transfer. ChemCatChem 2(10):1226–1230

    Article  CAS  Google Scholar 

  68. Bucher J, Wurm T, Nalivela KS, Rudolph M, Rominger F, Hashmi ASK (2014) Cyclization of gold acetylides: synthesis of vinyl sulfonates via gold vinylidene complexes. Angew Chem Int Ed doi:10.1002/anie.201310280

Download references

Acknowledgments

We acknowledge generous financial support from “the Fundamental Research Funds for the Central Universities (grant no. XDJK2013A008) “.

Supporting information

Structural parameters optimized by B97D functional, intrinsic reaction coordinate of all the intermediates and transition states, and so on.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2.28 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, J., He, R., Shen, W. et al. Mechanism of AuCl3-catalyzed cyclization of 1-(Indol-2-yl)-3-alkyn-1-ols: a DFT study. J Mol Model 20, 2239 (2014). https://doi.org/10.1007/s00894-014-2239-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2239-z

Keywords

Navigation