Skip to main content

Advertisement

Log in

Functional tooth regenerative therapy: tooth tissue regeneration and whole-tooth replacement

  • Review Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Oral and general health is compromised by irreversible dental problems, including dental caries, periodontal disease and tooth injury. Regenerative therapy for tooth tissue repair and whole-tooth replacement is currently considered a novel therapeutic concept with the potential for the full recovery of tooth function. Several types of stem cells and cell-activating cytokines have been identified in oral tissues. These cells are thought to be candidate cell sources for tooth tissue regenerative therapies because they have the ability to differentiate into tooth tissues in vitro and in vivo. Whole-tooth replacement therapy is regarded as an important model for the development of an organ regenerative concept. A novel three-dimensional cell-manipulation method, designated the organ germ method, has been developed to recapitulate organogenesis. This method involves compartmentalisation of epithelial and mesenchymal cells at a high cell density to mimic multicellular assembly conditions and epithelial–mesenchymal interactions. A bioengineered tooth germ can generate a structurally correct tooth in vitro and erupt successfully with the correct tooth structure when transplanted into the oral cavity. We have ectopically generated a bioengineered tooth unit composed of a mature tooth, periodontal ligament and alveolar bone, and that tooth unit was successfully engrafted into an adult jawbone through bone integration. Such bioengineered teeth were able to perform normal physiological tooth functions, such as developing a masticatory potential in response to mechanical stress and a perceptive potential for noxious stimuli. In this review, we describe recent findings and technologies underpinning tooth regenerative therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jussila M, Juuri E, Thesleff I. Tooth morphogenesis and renewal. In: Stem cells in craniofacial development and regeneration. New Jersey: Wiley-Blackwell; 2013. p. 109–134.

  2. Tucker A, Sharpe P. The cutting-edge of mammalian development: how the embryo makes teeth. Nat Rev Genet. 2004;5:499–508.

    PubMed  Google Scholar 

  3. Ikeda E, Tsuji T. Growing bioengineered teeth from single cells: potential for dental regenerative medicine. Expert Opin Biol Ther. 2008;8:735–44.

    PubMed  Google Scholar 

  4. Avery JK. Oral development and histology. New York: Thieme Press; 2002.

    Google Scholar 

  5. Ten Nanci A. Cate’s oral histology: development, structure, and function. St. Louis: Mosby Press; 2012.

    Google Scholar 

  6. Proffit WR, Fields HW Jr, Sarver DM. Contemporary orthodontics. St. Louis: Mosby Press; 2004. p. 78–83.

    Google Scholar 

  7. Rosenstiel SF, Land MF, Fujimoto J. Contemporary fixed prosthodontics. Missouri: Mosby Press; 2001. p. 209–430.

    Google Scholar 

  8. Pokorny PH, Wiens JP, Litvak H. Occlusion for fixed prosthodontics: a historical perspective of the gnathological influence. J Prosthet Dent. 2008;99:299–313.

    PubMed  Google Scholar 

  9. Brenemark PI, Zarb GA. Tissue-integrated prostheses. In: Albrektsson T, editor. Osseointegration in clinical dentistry. Berlin: Quintessence Pub Co Press; 1985. p. 211–32.

    Google Scholar 

  10. Burns DR, Beck DA, Nelson SK. A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: report of the Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. J Prosthet Dent. 2003;90:474–97.

    PubMed  Google Scholar 

  11. Huang GT, Sonoyama W, Liu Y, Liu H, Wang S, Shi S. The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. J Endod. 2008;34:645–51.

    PubMed Central  PubMed  Google Scholar 

  12. Brockes JP, Kumar A. Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science. 2005;310:1919–23.

    PubMed  Google Scholar 

  13. Watt FM, Hogan BL. Out of Eden: stem cells and their niches. Science. 2000;287:1427–30.

    PubMed  Google Scholar 

  14. Langer RS, Vacanti JP. Tissue engineering: the challenges ahead. Sci Am. 1999;280:86–9.

    PubMed  Google Scholar 

  15. Atala A. Tissue engineering, stem cells and cloning: current concepts and changing trends. Expert Opin Biol Ther. 2005;5:879–92.

    PubMed  Google Scholar 

  16. Korbling M, Estrov Z. Adult stem cells for tissue repair—a new therapeutic concept? N Engl J Med. 2003;349:570–82.

    PubMed  Google Scholar 

  17. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453:314–21.

    PubMed  Google Scholar 

  18. Thesleff I. Epithelial–mesenchymal signalling regulating tooth morphogenesis. J Cell Sci. 2003;116:1647–8.

    PubMed  Google Scholar 

  19. Purnell B. New release: the complete guide to organ repair. Introduction. Science. 2008;322:1489.

    PubMed  Google Scholar 

  20. Yen AH, Sharpe PT. Stem cells and tooth tissue engineering. Cell Tissue Res. 2008;331:359–72.

    PubMed  Google Scholar 

  21. Volponi AA, Pang Y, Sharpe PT. Stem cell-based biological tooth repair and regeneration. Trends Cell Biol. 2010;20:715–22.

    PubMed  Google Scholar 

  22. Sharpe PT, Young CS. Test-tube teeth. Sci Am. 2005;293:34–41.

    PubMed  Google Scholar 

  23. Duailibi SE, Duailibi MT, Vacanti JP, Yelick PC. Prospects for tooth regeneration. Periodontol. 2000;2006(41):177–87.

    Google Scholar 

  24. Nakao K, Morita R, Saji Y, Ishida K, Tomita Y, Ogawa M, Saitoh M, Tomooka Y, Tsuji T. The development of a bioengineered organ germ method. Nat Methods. 2007;4:227–30.

    PubMed  Google Scholar 

  25. Ikeda E, Morita R, Nakao K, Ishida K, Nakamura T, Takano-Yamamoto T, Ogawa M, Mizuno M, Kasugai S, Tsuji T. Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci USA. 2009;106:13475–80.

    PubMed Central  PubMed  Google Scholar 

  26. Oshima M, Mizuno M, Imamura A, Ogawa M, Yasukawa M, Yamazaki H, Morita R, Ikeda E, Nakao K, Takano-Yamamoto T, Kasugai S, Saito M, Tsuji T. Functional tooth regeneration using a bioengineered tooth unit as a mature organ replacement regenerative therapy. PLoS ONE. 2011;6:e21531.

    PubMed Central  PubMed  Google Scholar 

  27. Jernvall J, Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev. 2000;92:19–29.

    PubMed  Google Scholar 

  28. Bei M. Molecular genetics of tooth development. Curr Opin Genet Dev. 2009;19:504–10.

    PubMed Central  PubMed  Google Scholar 

  29. Nakatomi M, Wang XP, Key D, Lund JJ, Turbe-Doan A, Kist R, Aw A, Chen Y, Maas RL, Peters H. Genetic interactions between Pax9 and Msx1 regulate lip development and several stages of tooth morphogenesis. Dev Biol. 2010;340:438–49.

    PubMed  Google Scholar 

  30. Fukumoto S, Yamada Y. Review: extracellular matrix regulates tooth morphogenesis. Connect Tissue Res. 2005;46:220–6.

    PubMed  Google Scholar 

  31. Saito M, Nishida E, Sasaki T, Yoneda T, Shimizu N. The KK-Periome database for transcripts of periodontal ligament development. J Exp Zool B Mol Dev Evol. 2009;312B:495–502.

    PubMed  Google Scholar 

  32. Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009;88:792–806.

    PubMed Central  PubMed  Google Scholar 

  33. Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S. The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res. 2005;8:191–9.

    PubMed  Google Scholar 

  34. Bartold P, Narayanan A. Molecular and cell biology of healthy and diseased periodontal tissues. Periodontol. 2006;40:29–49.

    Google Scholar 

  35. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 2000;97:13625–30.

    PubMed Central  PubMed  Google Scholar 

  36. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA. 2003;100:5807–12.

    PubMed Central  PubMed  Google Scholar 

  37. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Wang S, Shi S. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS ONE. 2006;1:e79.

    PubMed Central  PubMed  Google Scholar 

  38. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod. 2008;34:166–71.

    PubMed Central  PubMed  Google Scholar 

  39. Nakashima M, Iohara K, Sugiyama M. Human dental pulp stem cells with highly angiogenic and neurogenic potential for possible use in pulp regeneration. Cytokine Growth Factor Rev. 2009;20:435–40.

    PubMed  Google Scholar 

  40. Saito M, Nishida E, Sasaki T, Yoneda T, Shimizu N. The KK-Periome database for transcripts of periodontal ligament development. J Exp Zool B Mol Dev Evol. 2009;312B:495–502.

    PubMed  Google Scholar 

  41. Shimono M, Ishikawa T, Ishikawa H, Matsuzaki H, Hashimoto S, Muramatsu T, Shima K, Matsuzaka K, Inoue T. Regulatory mechanisms of periodontal regeneration. Microsc Res Tech. 2003;60:491–502.

    PubMed  Google Scholar 

  42. Foster BL, Popowics TE, Fong HK, Somerman MJ. Advances in defining regulators of cementum development and periodontal regeneration. Curr Top Dev Biol. 2007;78:47–126.

    PubMed  Google Scholar 

  43. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364:149–55.

    PubMed  Google Scholar 

  44. Yang Z, Jin F, Zhang X, Ma D, Han C, Huo N, Wang Y, Zhang Y, Lin Z, Jin Y. Tissue engineering of cementum/periodontal-ligament complex using a novel three-dimensional pellet cultivation system for human periodontal ligament stem cells. Tissue Eng Part C Methods. 2009;15:571–81.

    PubMed  Google Scholar 

  45. Saito M, Handa K, Kiyono T, Hattori S, Yokoi T, Tsubakimoto T, Harada H, Noguchi T, Toyoda M, Sato S, Teranaka T. Immortalization of cementoblast progenitor cells with Bmi-1 and TERT. J Bone Miner Res. 2005;20:50–7.

    PubMed  Google Scholar 

  46. Morsczeck C, Götz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C, Sippel C, Hoffmann KH. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol. 2005;24:155–65.

    PubMed  Google Scholar 

  47. Luan X, Ito Y, Dangaria S, Diekwisch TG. Dental follicle progenitor cell heterogeneity in the developing mouse periodontium. Stem Cells Dev. 2006;15:595–608.

    PubMed Central  PubMed  Google Scholar 

  48. Tsutsui K, Manabe R, Yamada T, Nakano I, Oguri Y, Keene DR, Sengle G, Sakai LY, Sekiguchi K. ADAMTSL-6 is a novel extracellular matrix protein that binds to fibrillin-1 and promotes fibrillin-1 fibril formation. J Biol Chem. 2010;285:4870–82.

    PubMed Central  PubMed  Google Scholar 

  49. Saito M, Kurokawa M, Oda M, Oshima M, Tsutsui K, Kosaka K, Nakao K, Ogawa M, Manabe R, Suda N, Ganjargal G, Hada Y, Noguchi T, Teranaka T, Sekiguchi K, Yoneda T, Tsuji T. ADAMTSL6β protein rescues fibrillin-1 microfibril disorder in a Marfan syndrome mouse model through the promotion of fibrillin-1 assembly. J Biol Chem. 2011;286:38602–13.

    PubMed Central  PubMed  Google Scholar 

  50. Petrie TA, Reyes CD, Burns KL, García AJ. Simple application of fibronectin-mimetic coating enhances osseointegration of titanium implants. J Cell Mol Med. 2009;13:2602–12.

    PubMed Central  PubMed  Google Scholar 

  51. Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med. 2001;344:385–6.

    PubMed  Google Scholar 

  52. Cao Y, Vacanti JP, Paige KT, Upton J, Vacanti CA. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg. 1997;100:297–304.

    PubMed  Google Scholar 

  53. Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med. 2001;7:259–64.

    PubMed  Google Scholar 

  54. Honda M, Morikawa N, Hata K, Yada T, Morita S, Ueda M, Kimata K. Rat costochondral cell characteristics on poly (l-lactide-co-epsilon-caprolactone) scaffolds. Biomaterials. 2003;24:3511–9.

    PubMed  Google Scholar 

  55. Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res. 2002;81:695–700.

    PubMed  Google Scholar 

  56. Iwatsuki S, Honda MJ, Harada H, Ueda M. Cell proliferation in teeth reconstructed from dispersed cells of embryonic tooth germs in a three-dimensional scaffold. Eur J Oral Sci. 2006;114:310–7.

    PubMed  Google Scholar 

  57. Duailibi MT, Duailibi SE, Young CS, Bartlett JD, Vacanti JP, Yelick PC. Bioengineered teeth from cultured rat tooth bud cells. J Dent Res. 2004;83:523–8.

    PubMed  Google Scholar 

  58. Yelick PC, Vacanti JP. Bioengineered teeth from tooth bud cells. Dent Clin North Am. 2006;50:191–203.

    PubMed  Google Scholar 

  59. Sumita Y, Honda MJ, Ohara T, Tsuchiya S, Sagara H, Kagami H, Ueda M. Performance of collagen sponge as a 3-D scaffold for tooth-tissue engineering. Biomaterials. 2006;27:3238–48.

    PubMed  Google Scholar 

  60. Honda MJ, Tsuchiya S, Sumita Y, Sagara H, Ueda M. The sequential seeding of epithelial and mesenchymal cells for tissue-engineered tooth regeneration. Biomaterials. 2007;28:680–9.

    PubMed  Google Scholar 

  61. Zheng Y, Du X, Wang W, Boucher M, Parimoo S, Stenn K. Organogenesis from dissociated cells: generation of mature cycling hair follicles from skin-derived cells. J Invest Dermatol. 2005;124:867–76.

    PubMed  Google Scholar 

  62. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439:84–8.

    PubMed  Google Scholar 

  63. Hu B, Nadiri A, Kuchler-Bopp S, Perrin-Schmitt F, Peters H, Lesot H. Tissue engineering of tooth crown, root, and periodontium. Tissue Eng. 2006;12:2069–75.

    PubMed  Google Scholar 

  64. Yamamoto H, Kim EJ, Cho SW, Jung HS. Analysis of tooth formation by reaggregated dental mesenchyme from mouse embryo. J Electron Microsc. 2003;52:559–66.

    Google Scholar 

  65. Song Y, Zhang Z, Yu X, Yan M, Zhang X, Gu S, Stuart T, Liu C, Reiser J, Zhang Y, Chen Y. Application of lentivirus-mediated RNAi in studying gene function in mammalian tooth development. Dev Dyn. 2006;235:1334–44.

    PubMed  Google Scholar 

  66. Ishida K, Murofushi M, Nakao K, Morita R, Ogawa M, Tsuji T. The regulation of tooth morphogenesis is associated with epithelial cell proliferation and the expression of Sonic hedgehog through epithelial–mesenchymal interactions. Biochem Biophys Res Commun. 2011;405:455–61.

    PubMed  Google Scholar 

  67. Dawson PE. Functional occlusion: from TMJ to smile design. St. Louis: Mosby; 2006.

    Google Scholar 

  68. Wise GE, Frazier-Bowers S, D’Souza RN. Cellular, molecular, and genetic determinants of tooth eruption. Crit Rev Oral Biol Med. 2002;13:323–34.

    PubMed  Google Scholar 

  69. Wise GE, King GJ. Mechanisms of tooth eruption and orthodontic tooth movement. J Dent Res. 2008;87:414–34.

    PubMed Central  PubMed  Google Scholar 

  70. Ohazama A, Modino SA, Miletich I, Sharpe PT. Stem-cell-based tissue engineering of murine teeth. J Dent Res. 2004;83:518–22.

    PubMed  Google Scholar 

  71. Gridelli B, Remuzzi G. Strategies for making more organs available for transplantation. N Engl J Med. 2000;343:404–10.

    PubMed  Google Scholar 

  72. Tsukiboshi M. Autogenous tooth transplantation: a reevaluation. Int J Periodontics Restorative Dent. 1993;13:120–49.

    PubMed  Google Scholar 

  73. Lindhe J, Lang NP, Karring T. Clinical periodontology and implant dentistry. 5th ed. New Jersey: Blackwell; 2008.

    Google Scholar 

  74. Luukko K, Kvinnsland IH, Kettunen P. Tissue interactions in the regulation of axon pathfinding during tooth morphogenesis. Dev Dyn. 2005;234:482–8.

    PubMed  Google Scholar 

  75. Kjaer M, Beyer N, Secher NH. Exercise and organ transplantation. Scand J Med Sci Sports. 1999;9:1–14.

    PubMed  Google Scholar 

  76. Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K. Stem cells in dentistry–part I: stem cell sources. J Prosthodont Res. 2012;56(3):151–65.

    PubMed  Google Scholar 

  77. Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K. Stem cells in dentistry–part II: clinical applications. J Prosthodont Res. 2013;56(4):229–48.

    Google Scholar 

  78. Yan X, Qin H, Qu C, Tuan RS, Shi S, Huang GT. iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev. 2010;19(4):469–80.

    PubMed Central  PubMed  Google Scholar 

  79. Egusa H, Okita K, Kayashima H, Yu G, Fukuyasu S, Saeki M, Matsumoto T, Yamanaka S, Yatani H. Gingival fibroblasts as a promising source of induced pluripotent stem cells. PLoS ONE. 2010;5:e12743.

    PubMed Central  PubMed  Google Scholar 

  80. Arakaki M, Ishikawa M, Nakamura T, Iwamoto T, Yamada A, Fukumoto E, Saito M, Otsu K, Harada H, Yamada Y, Fukumoto S. Role of epithelial–stem cell interactions during dental cell differentiation. J Biol Chem. 2012;287:10590–601.

    PubMed Central  PubMed  Google Scholar 

  81. Otsu K, Kishigami R, Oikawa-Sasaki A, Fukumoto S, Yamada A, Fujiwara N, Ishizeki K, Harada H. Differentiation of induced pluripotent stem cells into dental mesenchymal cells. Stem Cells Dev. 2012;21:1156–64.

    PubMed  Google Scholar 

  82. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011;472:51–6.

    PubMed  Google Scholar 

  83. Suga H, Kadoshima T, Minaguchi M, Ohgushi M, Soen M, Nakano T, Takata N, Wataya T, Muguruma K, Miyoshi H, Yonemura S, Oiso Y, Sasai Y. Self-formation of functional adenohypophysis in three-dimensional culture. Nature. 2011;480:57–62.

    PubMed  Google Scholar 

  84. Sasai Y. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell. 2013;12:520–30.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Health and Labour Sciences Research Grants from the Ministry of Health, Labour, and Welfare (no. 21040101) to Akira Yamaguchi (Tokyo Medical and Dental University), a Grant-in-Aid for Scientific Research (A) (no. 20249078) to T. Tsuji (2008–2010) and a Grant-in-Aid for Young Scientists (B) to M. Oshima from the Ministry of Education, Culture, Sports and Technology, Japan. This work was also partially supported by Organ Technologies Inc.

Conflict of interest

M. Oshima and T. Tsuji have no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Tsuji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oshima, M., Tsuji, T. Functional tooth regenerative therapy: tooth tissue regeneration and whole-tooth replacement. Odontology 102, 123–136 (2014). https://doi.org/10.1007/s10266-014-0168-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-014-0168-z

Keywords

Navigation