Skip to main content
Log in

Genetic tools for the piezophilic hyperthermophilic archaeon Pyrococcus yayanosii

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The hyperthermophile Pyrococcus yayanosii CH1 is the only high-pressure-requiring microorganism obtained thus far within the archaea domain or among all non-psychrophiles in any domain. In this study, we developed a genetic manipulation system for P. yayanosii after first isolating a facultatively piezophilic derivative strain, designated P. yayanosii A1. The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase gene was overexpressed in strain P. yayanosii A1 and was demonstrated to confer host cell resistance against simvastatin. Furthermore, using simvastatin as a selection marker, the endogenous pyrF of P. yayanosii A1 was disrupted through homologous recombination, thus generating the additional host strain P. yayanosii A2 (ΔpyrF). A markerless gene disruption vector was constructed by incorporating a pyrF-sim R cassette that enables the combined use of simvastatin resistance for positive selection and 5-FOA for counter selection. The utility of this versatile disruption system was demonstrated by deleting the carbon–nitrogen hydrolase of P. yayanosii strain A1. These results demonstrate that a variety of genetic tools are now in place to study unknown gene function and the molecular mechanisms of piezophilic adaptation in P. yayanosii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allers T, Barak S, Liddell S, Wardell K, Mevarech M (2010) Improved strains and plasmid vectors for conditional overexpression of his-tagged proteins in Haloferax volcanii. Appl Environ Microbiol 76(6):1759–1769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Atomi H (2005) Recent progress towards the application of hyperthermophiles and their enzymes. Curr Opin Chem Biol 9(2):166–173

    Article  CAS  PubMed  Google Scholar 

  • Berkner S, Wlodkowski A, Albers SV, Lipps G (2010) Inducible and constitutive promoters for genetic systems in Sulfolobus acidocaldarius. Extremophiles 14(3):249–259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Birrien J-L, Zeng X, Jebbar M, Cambon-Bonavita M-A, Quérellou J, Oger P et al (2011) Pyrococcus yayanosii sp. nov, an obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 61(12):2827–2881

    Article  CAS  PubMed  Google Scholar 

  • Bitan-Banin G, Ortenberg R, Mevarech M (2003) Development of a gene knockout system for the halophilic archaeon Haloferax volcanii by use of the pyrE gene. J Bacteriol 185(3):772–778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boeke JD, LaCroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197(2):345–346

    Article  CAS  PubMed  Google Scholar 

  • Demirjian DC, Moris-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5(2):144–151

    Article  CAS  PubMed  Google Scholar 

  • Dodsworth JA, Li L, Wei S, Hedlund BP, Leigh JA, de Figueiredo P (2010) Interdomain conjugal transfer of DNA from Bacteria to Archaea. Appl Environ Microbiol 76(16):5644–5647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fu L, Li X, Xiao X, Xu J (2014) Purification and characterization of a thermostable aliphatic amidase from the hyperthermophilic archaeon Pyrococcus yayanosii CH1. Extremophiles 18(2):429–440

    Article  CAS  PubMed  Google Scholar 

  • Fukuda W, Morimoto N, Imanaka T, Fujiwara S (2008) Agmatine is essential for the cell growth of Thermococcus kodakaraensis. FEMS Microbiol Lett 287:113–120

    Article  CAS  PubMed  Google Scholar 

  • Grochowski LL, Xu H, White RH (2006) Methanocaldococcus jannaschii uses a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate. J Bacteriol 188(9):3192–3198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huber H, Stetter KO (1998) Hyperthermophiles and their possible potential in biotechnology. J Biotechnol 64(1):39–52

    Article  CAS  Google Scholar 

  • Jun X, Lupeng L, Minjuan X, Oger P, Fengping W, Jebbar M et al (2011) Complete Genome Sequence of the Obligate Piezophilic Hyperthermophilic Archaeon Pyrococcus yayanosii CH1. J Bacteriol 193(16):4297–4298

    Article  PubMed Central  PubMed  Google Scholar 

  • Lipscomb GL, Stirrett K, Schut GJ, Yang F, Jenney FE Jr, Scott RA et al (2011) Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation: construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases. Appl Environ Microbiol 77(7):2232–2238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lucas S, Toffin L, Zivanovic Y, Charlier D, Moussard H, Forterre P et al (2002) Construction of a shuttle vector for, and spheroplast transformation of, the hyperthermophilic archaeon Pyrococcus abyssi. Appl Environ Microbiol 68(11):5528–5536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marteinsson VT, Birrien JL, Reysenbach AL, Vernet M, Marie D, Gambacorta A et al (1999) Thermococcus barophilus sp. nov, a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 49(2):351–359

    Google Scholar 

  • Matsumi R, Manabe K, Fukui T, Atomi H, Imanaka T (2007) Disruption of a sugar transporter gene cluster in a hyperthermophilic archaeon using a host-marker system based on antibiotic resistance. J Bacteriol 189(7):2683–2691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moore BC, Leigh JA (2005) Markerless mutagenesis in Methanococcus maripaludis demonstrates roles for alanine dehydrogenase, alanine racemase, and alanine permease. J Bacteriol 187(3):972–979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peck RF, DasSarma S, Krebs MP (2000) Homologous gene knockout in the archaeon Halobacterium salinarum with ura3 as a counterselectable marker. Mol Microbiol 35(3):667–676

    Article  CAS  PubMed  Google Scholar 

  • Robb F, Place A (1995) Media for thermophiles. Archea: a laboratory manual—thermophiles. Cold Spring Harbor Laboratory Press, NY, 167–168

  • Santangelo TJ, Reeve JN (2010) Thermococcus kodakarensis Genetics: tK1827-Encoded {beta}-Glycosidase, new positive-selection protocol, and targeted and repetitive deletion technology. Appl Environ Microbiol 76(4):1044–1052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sato T, Fukui T, Atomi H, Imanaka T (2003) Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 185(1):210–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sato T, Fukui T, Atomi H, Imanaka T (2005) Improved and versatile transformation system allowing multiple genetic manipulations of the hyperthermophilic archaeon Thermococcus kodakaraensis. Appl Environ Microbiol 71(7):3889–3899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stetter KO (2006) History of discovery of the first hyperthermophiles. Extremophiles 10(5):357–362

    Article  PubMed  Google Scholar 

  • Takai K, Sugai A, Itoh T, Horikoshi K (2000) Palaeococcus ferrophilus gen nov, sp. nov, a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50(2):489–500

    Article  CAS  PubMed  Google Scholar 

  • Thiel A, Michoud G, Moalic Y, Flament D, Jebbar M (2014) Genetic manipulations of the hyperthermophilic piezophilic archaeon Thermococcus barophilus. Appl Environ Microbiol 80(7):2299–2306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vannier P, Marteinsson VT, Fridjonsson OH, Oger P, Jebbar M (2011) Complete genome sequence of the hyperthermophilic, piezophilic, heterotrophic, and carboxydotrophic archaeon Thermococcus barophilus MP. J Bacteriol 193(6):1481–1482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Waege I, Schmid G, Thumann S, Thomm M, Hausner W (2010) Shuttle vector-based transformation system for Pyrococcus furiosus. Appl Environ Microbiol 76(10):3308–3313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Worthington P, Hoang V, Perez-Pomares F, Blum P (2003) Targeted disruption of the {alpha}-amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol 185(2):482–488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zeng X, Birrien JL, Fouquet Y, Cherkashov G, Jebbar M, Querellou J et al (2009) Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life. ISME J 3(7):873–876

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Zhang X, Jiang L, Alain K, Jebbar M, Shao Z (2013) Palaeococcus pacificus sp. nov., an archaeon from deep-sea hydrothermal sediment. Int J Syst Evol Microbiol 63(6):2155–2159

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China “973” Grant 2014CB441503 and National Natural Science Foundation of China NSFC Grant 41376137. The authors would like to thank Tom Santangelo for providing the plasmid pTS535 and Douglas Bartlett for critical reading on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xu.

Additional information

Communicated by H. Atomi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 284 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Fu, L., Li, Z. et al. Genetic tools for the piezophilic hyperthermophilic archaeon Pyrococcus yayanosii . Extremophiles 19, 59–67 (2015). https://doi.org/10.1007/s00792-014-0705-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-014-0705-2

Keywords

Navigation