Skip to main content
Log in

Gray matter asymmetry alterations in children and adolescents with comorbid autism spectrum disorder and attention-deficit/hyperactivity disorder

  • Original Paper
  • Published:
European Child & Adolescent Psychiatry Aims and scope Submit manuscript

Abstract

Despite the high coexistence of autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) (ASD + ADHD), the underlying neurobiological basis of this disorder remains unclear. Altered brain structural asymmetries have been verified in ASD and ADHD, respectively, making brain asymmetry a candidate for characterizing this coexisting disorder. Here, we measured the gray matter (GM) volume asymmetry in ASD + ADHD versus ASD without ADHD (ASD-only), ADHD without ASD (ADHD-only), and typically developing controls (TDc). High-resolution T1-weighted data from 48 ASD + ADHD, 63 ASD-only, 32 ADHD-only, and 211 matched TDc were included in our study. We also assessed brain-behavior relationships and the effects of age on GM asymmetry. We found that there were both shared and disorder-specific GM volume asymmetry alterations in ASD + ADHD, ASD-only, and ADHD-only compared with TDc. This finding demonstrates that ASD + ADHD is neither an endophenocopy nor an additive pathology of ASD and ADHD, but an entirely different neuroanatomical pathology. In addition, ASD + ADHD displayed altered GM volume asymmetries in the prefrontal regions responsible for executive function and theory of mind compared with ASD-only. We also found significant effects of age on GM asymmetry. The present study may provide structural insights into the neural basis of ASD + ADHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data used in our study were obtained from the ABIDE database and the ADHD-200 Sample database and are publicly available at http://fcon_1000.projects.nitrc.org/indi/abide/ and http://fcon_1000.projects.nitrc.org/indi/adhd200/.

References

  1. Mizuno Y, Kagitani-Shimono K, Jung M, Makita K, Takiguchi S, Fujisawa TX et al (2019) Structural brain abnormalities in children and adolescents with comorbid autism spectrum disorder and attention-deficit/hyperactivity disorder. Transl Psychiatry 9:332

    Article  PubMed  PubMed Central  Google Scholar 

  2. Verhoef E, Grove J, Shapland CY, Demontis D, Burgess S, Rai D et al (2021) Discordant associations of educational attainment with ASD and ADHD implicate a polygenic form of pleiotropy. Nat Commun 12:6534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Wang K, Xu M, Ji Y, Zhang L, Du X, Li J et al (2019) Altered social cognition and connectivity of default mode networks in the co-occurrence of autistic spectrum disorder and attention deficit hyperactivity disorder. Aust N Z J Psychiatry 53:760–771

    Article  PubMed  Google Scholar 

  4. Sinzig J, Bruning N, Morsch D, Lehmkuhl G (2008) Attention profiles in autistic children with and without comorbid hyperactivity and attention problems. Acta Neuropsychiatr 20:207–215

    Article  PubMed  Google Scholar 

  5. Sikora DM, Vora P, Coury DL, Rosenberg D (2012) Attention-deficit/hyperactivity disorder symptoms, adaptive functioning, and quality of life in children with autism spectrum disorder. Pediatrics 130(Suppl 2):S91-97

    Article  PubMed  Google Scholar 

  6. Rao PA, Landa RJ (2014) Association between severity of behavioral phenotype and comorbid attention deficit hyperactivity disorder symptoms in children with autism spectrum disorders. Autism 18:272–280

    Article  PubMed  Google Scholar 

  7. Factor RS, Ryan SM, Farley JP, Ollendick TH, Scarpa A (2017) Does the presence of anxiety and ADHD symptoms add to social impairment in children with autism spectrum disorder? J Autism Dev Disord 47:1122–1134

    Article  PubMed  Google Scholar 

  8. Boo C, Alpers-Leon N, McIntyre N, Mundy P, Naigles L (2022) Conversation during a virtual reality task reveals new structural language profiles of children with ASD, ADHD, and comorbid symptoms of both. J Autism Dev Disord 52:2970–2983

    Article  PubMed  Google Scholar 

  9. Avni E, Ben-Itzchak E, Zachor DA (2018) The presence of comorbid ADHD and anxiety symptoms in autism spectrum disorder: clinical presentation and predictors. Front Psychiatry 9:717

    Article  PubMed  PubMed Central  Google Scholar 

  10. Di Martino A, Zuo XN, Kelly C, Grzadzinski R, Mennes M, Schvarcz A et al (2013) Shared and distinct intrinsic functional network centrality in autism and attention-deficit/hyperactivity disorder. Biol Psychiat 74:623–632

    Article  PubMed  Google Scholar 

  11. Kangarani-Farahani M, Izadi-Najafabadi S, Zwicker JG (2022) How does brain structure and function on MRI differ in children with autism spectrum disorder, developmental coordination disorder, and/or attention deficit hyperactivity disorder? Int J Dev Neurosci 82:681–715

    Article  PubMed  CAS  Google Scholar 

  12. Nickel K, Tebartz van Elst L, Manko J, Unterrainer J, Rauh R, Klein C et al (2018) Inferior frontal gyrus volume loss distinguishes between autism and (Comorbid) attention-deficit/hyperactivity disorder-a freesurfer analysis in children. Front Psychiatry 9:521

    Article  PubMed  PubMed Central  Google Scholar 

  13. Boedhoe PSW, van Rooij D, Hoogman M, Twisk JWR, Schmaal L, Abe Y et al (2020) Subcortical brain volume, regional cortical thickness, and cortical surface area across disorders: findings from the ENIGMA ADHD, ASD, and OCD working groups. Am J Psychiatry 177:834–843

    Article  PubMed  PubMed Central  Google Scholar 

  14. Radonjić NV, Hess JL, Rovira P, Andreassen O, Buitelaar JK, Ching CRK et al (2021) Structural brain imaging studies offer clues about the effects of the shared genetic etiology among neuropsychiatric disorders. Mol Psychiatry 26:2101–2110

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fu L, Wang Y, Fang H, Xiao X, Xiao T, Li Y et al (2020) Longitudinal study of brain asymmetries in autism and developmental delays aged 2–5 years. Neuroscience 432:137–149

    Article  PubMed  CAS  Google Scholar 

  16. Chen S, Guan L, Tang J, He F, Zheng Y (2021) Asymmetry in cortical and subcortical structures of the brain in children and adolescents with attention-deficit/hyperactivity disorder. Neuropsychiatr Dis Treat 17:493–502

    Article  PubMed  PubMed Central  Google Scholar 

  17. Postema MC, van Rooij D, Anagnostou E, Arango C, Auzias G, Behrmann M et al (2019) Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets. Nat Commun 10:4958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Postema MC, Hoogman M, Ambrosino S, Asherson P, Banaschewski T, Bandeira CE et al (2021) Analysis of structural brain asymmetries in attention-deficit/hyperactivity disorder in 39 datasets. J Child Psychol Psychiatry 62:1202–1219

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li C, Chen W, Li X, Li T, Chen Y, Zhang C et al (2022) Gray matter asymmetry atypical patterns in subgrouping minors with autism based on core symptoms. Front Neurosci 16:1077908

    Article  PubMed  Google Scholar 

  20. Kurth F, Gaser C, Luders E (2015) A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM). Nat Protoc 10:293–304

    Article  PubMed  CAS  Google Scholar 

  21. Rommelse NN, Geurts HM, Franke B, Buitelaar JK, Hartman CA (2011) A review on cognitive and brain endophenotypes that may be common in autism spectrum disorder and attention-deficit/hyperactivity disorder and facilitate the search for pleiotropic genes. Neurosci Biobehav Rev 35:1363–1396

    Article  PubMed  CAS  Google Scholar 

  22. Antshel KM, Zhang-James Y, Wagner KE, Ledesma A, Faraone SV (2016) An update on the comorbidity of ADHD and ASD: a focus on clinical management. Expert Rev Neurother 16:279–293

    Article  PubMed  CAS  Google Scholar 

  23. Yeh ZT, Tsai MC, Tsai MD, Lo CY, Wang KC (2017) The relationship between theory of mind and the executive functions: Evidence from patients with frontal lobe damage. Appl Neuropsychol Adult 24:342–349

    Article  PubMed  Google Scholar 

  24. Yasumura A, Omori M, Fukuda A, Takahashi J, Yasumura Y, Nakagawa E et al (2019) Age-related differences in frontal lobe function in children with ADHD. Brain Develop 41:577–586

    Article  Google Scholar 

  25. Xu P, Chen A, Li Y, Xing X, Lu H (2019) Medial prefrontal cortex in neurological diseases. Physiol Genomics 51:432–442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bird CM, Castelli F, Malik O, Frith U, Husain M (2004) The impact of extensive medial frontal lobe damage on “Theory of Mind” and cognition. Brain 127:914–928

    Article  PubMed  Google Scholar 

  27. Berenguer C, Roselló B, Colomer C, Baixauli I, Miranda A (2018) Children with autism and attention deficit hyperactivity disorder. Relationships between symptoms and executive function, theory of mind, and behavioral problems. Res Dev Disabil 83:260–269

    Article  PubMed  Google Scholar 

  28. Jones CRG, Simonoff E, Baird G, Pickles A, Marsden AJS, Tregay J et al (2018) The association between theory of mind, executive function, and the symptoms of autism spectrum disorder. Autism Res 11:95–109

    Article  PubMed  Google Scholar 

  29. Colombi C, Ghaziuddin M (2017) Neuropsychological characteristics of children with mixed autism and ADHD. Autism Res Treat 2017:5781781

    PubMed  PubMed Central  Google Scholar 

  30. Wang H, Ma ZH, Xu LZ, Yang L, Ji ZZ, Tang XZ et al (2022) Developmental brain structural atypicalities in autism: a voxel-based morphometry analysis. Child Adolesc Psychiatry Ment Health 16:7

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kertesz A, Polk M, Black SE, Howell J (1992) Anatomical asymmetries and functional laterality. Brain 115(Pt 2):589–605

    Article  PubMed  Google Scholar 

  32. Boddaert N, Chabane N, Gervais H, Good CD, Bourgeois M, Plumet MH et al (2004) Superior temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study. Neuroimage 23:364–369

    Article  PubMed  CAS  Google Scholar 

  33. Lim L, Marquand A, Cubillo AA, Smith AB, Chantiluke K, Simmons A et al (2013) Disorder-specific predictive classification of adolescents with attention deficit hyperactivity disorder (ADHD) relative to autism using structural magnetic resonance imaging. PLoS One 8:e63660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Brieber S, Neufang S, Bruning N, Kamp-Becker I, Remschmidt H, Herpertz-Dahlmann B et al (2007) Structural brain abnormalities in adolescents with autism spectrum disorder and patients with attention deficit/hyperactivity disorder. J Child Psychol Psychiatry 48:1251–1258

    Article  PubMed  Google Scholar 

  35. Sanz-Cervera P, Pastor-Cerezuela G, González-Sala F, Tárraga-Mínguez R, Fernández-Andrés MI (2017) Sensory processing in children with autism spectrum disorder and/or attention deficit hyperactivity disorder in the home and classroom contexts. Front Psychol 8:1772

    Article  PubMed  PubMed Central  Google Scholar 

  36. Foss-Feig JH, Heacock JL, Cascio CJ (2012) Tactile responsiveness patterns and their association with core features in autism spectrum disorders. Res Autism Spectr Disord 6:337–344

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wodka EL, Puts NA, Mahone EM, Edden RA, Tommerdahl M, Mostofsky SH (2016) The role of attention in somatosensory processing: a multi-trait, multi-method analysis. J Autism Dev Disord 46:3232–3241

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rangarajan V, Hermes D, Foster BL, Weiner KS, Jacques C, Grill-Spector K et al (2014) Electrical stimulation of the left and right human fusiform gyrus causes different effects in conscious face perception. J Neurosci 34:12828–12836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Dougherty CC, Evans DW, Katuwal GJ, Michael AM (2016) Asymmetry of fusiform structure in autism spectrum disorder: trajectory and association with symptom severity. Molecular autism 7:28

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hoogman M, Muetzel R, Guimaraes JP, Shumskaya E, Mennes M, Zwiers MP et al (2019) Brain imaging of the cortex in ADHD: a coordinated analysis of large-scale clinical and population-based samples. Am J Psychiatry 176:531–542

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ibáñez A, Petroni A, Urquina H, Torrente F, Torralva T, Hurtado E et al (2011) Cortical deficits of emotional face processing in adults with ADHD: its relation to social cognition and executive function. Soc Neurosci 6:464–481

    Article  PubMed  Google Scholar 

  42. Li D, Karnath HO, Xu X (2017) Candidate biomarkers in children with autism spectrum disorder: a review of MRI studies. Neurosci Bull 33:219–237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Rommelse N, Buitelaar JK, Hartman CA (2017) Structural brain imaging correlates of ASD and ADHD across the lifespan: a hypothesis-generating review on developmental ASD-ADHD subtypes. J Neural Transm 124:259–271

    Article  PubMed  Google Scholar 

  44. Chantiluke K, Christakou A, Murphy CM, Giampietro V, Daly EM, Ecker C et al (2014) Disorder-specific functional abnormalities during temporal discounting in youth with Attention Deficit Hyperactivity Disorder (ADHD), Autism and comorbid ADHD and Autism. Psychiatry Res 223:113–120

    Article  PubMed  Google Scholar 

  45. McCartney G, Hepper P (1999) Development of lateralized behaviour in the human fetus from 12 to 27 weeks’ gestation. Dev Med Child Neurol 41:83–86

    PubMed  CAS  Google Scholar 

  46. Karlebach G, Francks C (2015) Lateralization of gene expression in human language cortex. Cortex 67:30–36

    Article  PubMed  Google Scholar 

  47. Shaw P, Sharp WS, Morrison M, Eckstrand K, Greenstein DK, Clasen LS et al (2009) Psychostimulant treatment and the developing cortex in attention deficit hyperactivity disorder. Am J Psychiatry 166:58–63

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere appreciation to the data donors and organizers and participants who participated in this study and to Dr. Gao Lei from Zhongnan Hospital of Wuhan University for his guidance on image processing technology.

Funding

National Natural Science Foundation Of China, 81871354, 81571672,81871354, 81571672,81871354, 81571672,81871354, 81571672, 81871354, 81571672,81871354, 81571672,81871354, 81571672

Author information

Authors and Affiliations

Authors

Contributions

XMW, LW, and XSY gain research funding. CCL, XMW, LW, and XSY contributed to the study design, interpretation of the findings, and manuscript edits. CCL wrote the initial draft of the manuscript.CCL, XMW, LW, XSY, YNZ, RZ, RQ, TL, and LL supervised the analysis of study data. CCL, XMW, LW, XSY, YNZ, RZ, RQ, TL, and LL collected the data. YNZ, RZ, RQ, TL, and LL performed data cleaning and analysis.

Corresponding authors

Correspondence to Xianshun Yuan, Li Wang or Ximing Wang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

All subjects and/or carers provided informed consent. Experiments were approved by the Institutional Review Board at each site.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Supplementary file2 (DOCX 19 KB)

787_2023_2323_MOESM3_ESM.tif

Supplementary file3 Supplementary Figure 1 Tissue segmentation. Shown are three examples of successful tissue segmentations. Each example of an original T1-weighted image, two main tissue compartments resulting from the segmentation step: gray matter and white matter, and an overall weighted image quality rating. Abbreviations: GM gray matter, WM white matter (TIF 8207 KB)

787_2023_2323_MOESM4_ESM.jpg

Supplementary file4 Supplementary Figure 2 Calculation of AIs. AI= ((i1-i2)/((i1+i2).*0.5)).*i3, where i1 refers to the nonflipped warped GM segments, i2 refers to the flipped warped GM segments, and i3 refers to the right-hemispheric mask image. Due to the use of the right hemisphere mask, for all nonflipped and flipped warped GM segments, only the right hemisphere is retained for further analysis. The “i1-i2” in the right hemisphere represents ‘‘right-minus-left asymmetry. Therefore, positive AIs represent rightward GM volume asymmetry and negative AIs represent leftward GM volume asymmetry, respectively. Abbreviations: AI asymmetry index, GM gray matter, WM white matter (JPG 115 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhang, R., Zhou, Y. et al. Gray matter asymmetry alterations in children and adolescents with comorbid autism spectrum disorder and attention-deficit/hyperactivity disorder. Eur Child Adolesc Psychiatry (2023). https://doi.org/10.1007/s00787-023-02323-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00787-023-02323-4

Keywords

Navigation