Skip to main content
Log in

Cortical thickness abnormalities in autism spectrum disorder

  • Original Contribution
  • Published:
European Child & Adolescent Psychiatry Aims and scope Submit manuscript

Abstract

The pathological mechanism of autism spectrum disorder (ASD) remains unclear. Nowadays, surface-based morphometry (SBM) based on structural magnetic resonance imaging (sMRI) techniques have reported cortical thickness (CT) variations in ASD. However, the findings were inconsistent and heterogeneous. This current meta-analysis conducted a whole-brain vertex-wise coordinate‐based meta‐analysis (CBMA) on CT studies to explore the most noticeable and robust CT changes in ASD individuals by applying the seed-based d mapping (SDM) program. A total of 26 investigations comprised 27 datasets were included, containing 1,635 subjects with ASD and 1470 HC, along with 94 coordinates. Individuals with ASD exhibited significantly altered CT in several regions compared to HC, including four clusters with thicker CT in the right superior temporal gyrus (STG.R), the left middle temporal gyrus (MTG.L), the left anterior cingulate/paracingulate gyri, the right superior frontal gyrus (SFG.R, medial orbital parts), as well as three clusters with cortical thinning including the left parahippocampal gyrus (PHG.L), the right precentral gyrus (PCG.R) and the left middle frontal gyrus (MFG.L). Adults with ASD only demonstrated CT thinning in the right parahippocampal gyrus (PHG.R), revealed by subgroup meta-analyses. Meta-regression analyses found that CT in STG.R was positively correlated with age. Meanwhile, CT in MFG.L and PHG.L had negative correlations with the age of ASD individuals. These results suggested a complicated and atypical cortical development trajectory in ASD, and would provide a deeper understanding of the neural mechanism underlying the cortical morphology in ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J (2018) Autism spectrum disorder. The Lancet 392(10146):508–520

    Article  Google Scholar 

  2. Guo BQ, Li HB, Zhai DS, Yang LQ (2022) Prevalence of autism spectrum disorder diagnosis by birth weight, gestational age, and size for gestational age: a systematic review, meta-analysis, and meta-regression. Eur Child Adolesc Psychiatry. https://doi.org/10.1007/s00787-022-02078-4

    Article  PubMed  PubMed Central  Google Scholar 

  3. Elsabbagh M, Divan G, Koh Y, Kim Y, Kauchali S, Marcín C et al (2012) Global prevalence of autism and other pervasive developmental disorders. Autism Res 5(3):160–179

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lyall K, Croen L, Daniels J, Fallin M, Ladd-Acosta C, Lee B et al (2017) The changing epidemiology of autism spectrum disorders. Annu Rev Public Health 38:81–102

    Article  PubMed  Google Scholar 

  5. Qiu S, Lu Y, Li Y, Shi J, Cui H, Gu Y et al (2020) Prevalence of autism spectrum disorder in Asia: A systematic review and meta-analysis. Psychiatry Res 284:112679

    Article  PubMed  Google Scholar 

  6. Boltri M, Sapuppo W (2021) Anorexia nervosa and autism spectrum disorder: a systematic review. Psychiatry Res 306:114271

    Article  PubMed  Google Scholar 

  7. Solmi M, Song M, Yon DK, Lee SW, Fombonne E, Kim MS et al (2022) Incidence, prevalence, and global burden of autism spectrum disorder from 1990 to 2019 across 204 countries. Mole Psychiatry. https://doi.org/10.1038/s41380-022-01630-7

    Article  Google Scholar 

  8. Ecker C, Bookheimer SY, Murphy DGM (2015) Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan. Lancet Neurol 14(11):1121–1134

    Article  PubMed  Google Scholar 

  9. Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M et al (2009) Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex 19(11):2728–2735

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fischl B (2012) FreeSurfer. Neuroimage 62(2):774–781

    Article  PubMed  Google Scholar 

  11. Winkler AM, Kochunov P, Blangero J, Almasy L, Zilles K, Fox PT et al (2010) Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage 53(3):1135–1146

    Article  PubMed  Google Scholar 

  12. Li Q, Zhao Y, Chen Z, Long J, Dai J, Huang X et al (2020) Meta-analysis of cortical thickness abnormalities in medication-free patients with major depressive disorder. Neuropsychopharmacol 45(4):703–712

    Article  Google Scholar 

  13. Anagnostou E, Taylor MJ (2011) Review of neuroimaging in autism spectrum disorders: what have we learned and where we go from here. Molecular Autism 2(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  14. Minshew NJ, Keller TA (2010) The nature of brain dysfunction in autism: functional brain imaging studies. Curr Opin Neurol 23(2):124–130

    Article  PubMed  PubMed Central  Google Scholar 

  15. Philip RC, Dauvermann MR, Whalley HC, Baynham K, Lawrie SM, Stanfield AC (2012) A systematic review and meta-analysis of the fMRI investigation of autism spectrum disorders. Neurosci Biobehav Rev 36(2):901–942

    Article  PubMed  Google Scholar 

  16. Sabbagh MA (2004) Understanding orbitofrontal contributions to theory-of-mind reasoning: implications for autism. Brain Cogn 55(1):209–219

    Article  PubMed  Google Scholar 

  17. Yang DY, Beam D, Pelphrey KA, Abdullahi S, Jou RJ (2016) Cortical morphological markers in children with autism: a structural magnetic resonance imaging study of thickness, area, volume, and gyrification. Molecular Autism 7:11

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hazlett HC, Gu H, Munsell BC, Kim SH, Styner M, Wolff JJ et al (2017) Early brain development in infants at high risk for autism spectrum disorder. Nature 542(7641):348–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Raznahan A, Lenroot R, Thurm A, Gozzi M, Hanley A, Spence SJ et al (2012) Mapping cortical anatomy in preschool aged children with autism using surface-based morphometry. NeuroImage Clin 2:111–119

    Article  PubMed  PubMed Central  Google Scholar 

  20. Richter J, Henze R, Vomstein K, Stieltjes B, Parzer P, Haffner J et al (2015) Reduced cortical thickness and its association with social reactivity in children with autism spectrum disorder. Psychiatry Res 234(1):15–24

    Article  PubMed  Google Scholar 

  21. Hazlett H, Poe M, Gerig G, Styner M, Chappell C, Smith R et al (2011) Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years. Arch Gen Psychiatry 68(5):467–476

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schaer M, Ottet MC, Scariati E, Dukes D, Franchini M, Eliez S et al (2013) Decreased frontal gyrification correlates with altered connectivity in children with autism. Front Hum Neurosci 7:750

    Article  PubMed  PubMed Central  Google Scholar 

  23. Duerden EG, Card D, Roberts SW, Mak-Fan KM, Chakravarty MM, Lerch JP et al (2014) Self-injurious behaviours are associated with alterations in the somatosensory system in children with autism spectrum disorder. Brain Struct Funct 219(4):1251–1261

    Article  PubMed  Google Scholar 

  24. Albajes-Eizagirre A, Radua J (2018) What do results from coordinate-based meta-analyses tell us? Neuroimage 176:550–553

    Article  PubMed  Google Scholar 

  25. Muller VI, Cieslik EC, Laird AR, Fox PT, Radua J, Mataix-Cols D et al (2018) Ten simple rules for neuroimaging meta-analysis. Neurosci Biobehav Rev 84:151–161

    Article  PubMed  Google Scholar 

  26. Yang X, Si T, Gong Q, Qiu L, Jia Z, Zhou M et al (2016) Brain gray matter alterations and associated demographic profiles in adults with autism spectrum disorder: a meta-analysis of voxel-based morphometry studies. Aust N Z J Psychiatry 50(8):741–753

    Article  PubMed  Google Scholar 

  27. Liu J, Yao L, Zhang W, Xiao Y, Liu L, Gao X et al (2017) Gray matter abnormalities in pediatric autism spectrum disorder: a meta-analysis with signed differential mapping. Eur Child Adolesc Psychiatry 26(8):933–945

    Article  PubMed  Google Scholar 

  28. Duerden EG, Mak-Fan KM, Taylor MJ, Roberts SW (2012) Regional differences in grey and white matter in children and adults with autism spectrum disorders: an activation likelihood estimate (ALE) meta-analysis. Autism Res 5(1):49–66

    Article  PubMed  Google Scholar 

  29. Del Casale A, Ferracuti S, Alcibiade A, Simone S, Modesti MN, Pompili M (2022) Neuroanatomical correlates of autism spectrum disorders: a meta-analysis of structural magnetic resonance imaging (MRI) studies. Psychiatry Res Neuroimaging 325:111516

    Article  PubMed  Google Scholar 

  30. Zhu Z, Zhao Y, Wen K, Li Q, Pan N, Fu S et al (2022) Cortical thickness abnormalities in patients with bipolar disorder: a systematic review and meta-analysis. J Affect Disord 300:209–218

    Article  PubMed  Google Scholar 

  31. Li L, Zhang Y, Zhao Y, Li Z, Kemp GJ, Wu M et al (2022) Cortical thickness abnormalities in patients with post-traumatic stress disorder: a vertex-based meta-analysis. Neurosci Biobehav Rev 134:104519

    Article  PubMed  Google Scholar 

  32. Zhao Y, Zhang Q, Shah C, Li Q, Sweeney JA, Li F et al (2022) Cortical thickness abnormalities at different stages of the illness course in schizophrenia: a systematic review and meta-analysis. JAMA Psychiat 79(6):560–570

    Article  Google Scholar 

  33. Boedhoe PSW, van Rooij D, Hoogman M, Twisk JWR, Schmaal L, Abe Y et al (2020) Subcortical brain volume, regional cortical thickness, and cortical surface area across disorders: findings from the ENIGMA ADHD, ASD, and OCD working groups. Am J Psychiatry 177(9):834–843

    Article  PubMed  PubMed Central  Google Scholar 

  34. Di Martino A, Yan CG, Li Q, Denio E, Castellanos FX, Alaerts K et al (2014) The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry 19(6):659–667

    Article  PubMed  Google Scholar 

  35. Di Martino A, O’Connor D, Chen B, Alaerts K, Anderson JS, Assaf M et al (2017) Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Sci Data 4:170010

    Article  PubMed  PubMed Central  Google Scholar 

  36. Murphy D, Spooren W (2012) EU-AIMS: a boost to autism research. Nat Rev Drug Discov 11(11):815–816

    Article  CAS  PubMed  Google Scholar 

  37. Loth E, Spooren W, Murphy D (2014) New treatment targets for autism spectrum disorders: EU-AIMS. Lancet Psychiatry 1(6):413–415

    Article  PubMed  Google Scholar 

  38. Loth E, Charman T, Mason L, Tillmann J, Jones EJH, Wooldridge C et al (2017) The EU-AIMS Longitudinal European Autism Project (LEAP): design and methodologies to identify and validate stratification biomarkers for autism spectrum disorders. Molecular Autism 8:24

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zielinski BA, Prigge MB, Nielsen JA, Froehlich AL, Abildskov TJ, Anderson JS et al (2014) Longitudinal changes in cortical thickness in autism and typical development. Brain 137(Pt 6):1799–1812

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wallace GL, Eisenberg IW, Robustelli B, Dankner N, Kenworthy L, Giedd JN et al (2015) Longitudinal cortical development during adolescence and young adulthood in autism spectrum disorder: increased cortical thinning but comparable surface area changes. J Am Acad Child Adolesc Psychiatry 54(6):464–469

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mensen VT, Wierenga LM, van Dijk S, Rijks Y, Oranje B, Mandl RC et al (2017) Development of cortical thickness and surface area in autism spectrum disorder. NeuroImage Clin 13:215–222

    Article  PubMed  Google Scholar 

  42. Durkut M, Blok E, Suleri A, White T (2022) The longitudinal bidirectional relationship between autistic traits and brain morphology from childhood to adolescence: a population-based cohort study. Molecular Autism 13(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hettwer MD, Lariviere S, Park BY, van den Heuvel OA, Schmaal L, Andreassen OA et al (2022) Coordinated cortical thickness alterations across six neurodevelopmental and psychiatric disorders. Nat Commun 13(1):6851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62(10):1006–1012

    Article  PubMed  Google Scholar 

  45. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700

    Article  PubMed  PubMed Central  Google Scholar 

  46. Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  47. Radua J, Mataix-Cols D (2009) Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. Br J Psychiatry 195(5):393–402

    Article  PubMed  Google Scholar 

  48. Albajes-Eizagirre A, Solanes A, Vieta E, Radua J (2019) Voxel-based meta-analysis via permutation of subject images (PSI): theory and implementation for SDM. Neuroimage 186:174–184

    Article  PubMed  Google Scholar 

  49. Radua J, Mataix-Cols D, Phillips ML, El-Hage W, Kronhaus DM, Cardoner N et al (2012) A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. Eur psychiatry 27(8):605–611

    Article  CAS  PubMed  Google Scholar 

  50. Radua J, Rubia K, Canales-Rodriguez EJ, Pomarol-Clotet E, Fusar-Poli P, Mataix-Cols D (2014) Anisotropic kernels for coordinate-based meta-analyses of neuroimaging studies. Front Psych 5:13

    Google Scholar 

  51. Xia M, Wang J, He Y (2013) BrainNet viewer: a network visualization tool for human brain connectomics. PLoS ONE 8(7):e68910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ecker C, Pretzsch CM, Bletsch A, Mann C, Schaefer T, Ambrosino S et al (2022) Interindividual differences in cortical thickness and their genomic underpinnings in autism spectrum disorder. Am J Psychiatry 179(3):242–254

    Article  PubMed  Google Scholar 

  53. Balardin JB, Sato JR, Vieira G, Feng Y, Daly E, Murphy C et al (2015) Relationship between surface-based brain morphometric measures and intelligence in autism spectrum disorders: influence of history of language delay. Autism Res 8(5):556–566

    Article  PubMed  Google Scholar 

  54. James D, Lam VT, Jo B, Fung LK (2022) Region-specific associations between gamma-aminobutyric acid a receptor binding and cortical thickness in high-functioning autistic adults. Autism Res 15(6):1068–1082

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ohta H, Nordahl CW, Iosif AM, Lee A, Rogers S, Amaral DG (2016) Increased surface area, but not cortical thickness, in a subset of young boys with autism spectrum disorder. Autism Res 9(2):232–248

    Article  PubMed  Google Scholar 

  56. Andrews DS, Avino TA, Gudbrandsen M, Daly E, Marquand A, Murphy CM et al (2017) In vivo evidence of reduced integrity of the gray-white matter boundary in autism spectrum disorder. Cereb Cortex 27(2):877–887

    PubMed  PubMed Central  Google Scholar 

  57. Bernhardt BC, Valk SL, Silani G, Bird G, Frith U, Singer T (2014) Selective disruption of sociocognitive structural brain networks in autism and alexithymia. Cereb Cortex 24(12):3258–3267

    Article  PubMed  Google Scholar 

  58. Hong SJ, Hyung B, Paquola C, Bernhardt BC (2019) The superficial white matter in autism and its role in connectivity anomalies and symptom severity. Cereb Cortex 29(10):4415–4425

    Article  PubMed  Google Scholar 

  59. Kohli JS, Kinnear MK, Fong CH, Fishman I, Carper RA, Muller RA (2019) Local cortical gyrification is increased in children with autism spectrum disorders, but decreases rapidly in adolescents. Cereb Cortex 29(6):2412–2423

    Article  PubMed  Google Scholar 

  60. Pereira AM, Campos BM, Coan AC, Pegoraro LF, de Rezende TJR, Obeso I et al (2018) Differences in cortical structure and functional mri connectivity in high functioning Autism. Front Neurol 9:539

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hyde KL, Samson F, Evans AC, Mottron L (2010) Neuroanatomical differences in brain areas implicated in perceptual and other core features of autism revealed by cortical thickness analysis and voxel-based morphometry. Hum Brain Mapp 31(4):556–566

    Article  PubMed  Google Scholar 

  62. Koolschijn P, Geurts HM (2016) Gray matter characteristics in mid and old aged adults with ASD. J Autism Dev Disord 46(8):2666–2678

    Article  PubMed  PubMed Central  Google Scholar 

  63. Raznahan A, Toro R, Proitsi P, Powell J, Paus T, Bolton PF et al (2009) A functional polymorphism of the brain derived neurotrophic factor gene and cortical anatomy in autism spectrum disorder. J Neurodev Disord 1(3):215–223

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gudbrandsen M, Bletsch A, Mann C, Daly E, Murphy CM, Stoencheva V et al (2020) Neuroanatomical underpinnings of autism symptomatology in carriers and non-carriers of the 22q112 microdeletion. Molecular Autism 11(1):46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schaer M, Kochalka J, Padmanabhan A, Supekar K, Menon V (2015) Sex differences in cortical volume and gyrification in autism. Molecular autism 6:42

    Article  PubMed  PubMed Central  Google Scholar 

  66. Scheel C, Rotarska-Jagiela A, Schilbach L, Lehnhardt FG, Krug B, Vogeley K et al (2011) Imaging derived cortical thickness reduction in high-functioning autism: key regions and temporal slope. Neuroimage 58(2):391–400

    Article  PubMed  Google Scholar 

  67. Sussman D, Leung RC, Vogan VM, Lee W, Trelle S, Lin S et al (2015) The autism puzzle: diffuse but not pervasive neuroanatomical abnormalities in children with ASD. NeuroImage Clin 8:170–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kohli JS, Kinnear MK, Martindale IA, Carper RA, Muller RA (2019) Regionally decreased gyrification in middle-aged adults with autism spectrum disorders. Neurology 93(20):e1900–e1905

    Article  PubMed  PubMed Central  Google Scholar 

  69. Foster NE, Doyle-Thomas KA, Tryfon A, Ouimet T, Anagnostou E, Evans AC et al (2015) Structural gray matter differences during childhood development in autism spectrum disorder: a multimetric approach. Pediatr Neurol 53(4):350–359

    Article  PubMed  Google Scholar 

  70. Maier S, Tebartz van Elst L, Perlov E, Duppers AL, Nickel K, Fangmeier T et al (2018) Cortical properties of adults with autism spectrum disorder and an IQ>100. Psychiatry Res Neuroimaging 279:8–13

    Article  PubMed  Google Scholar 

  71. Doyle-Thomas KA, Duerden EG, Taylor MJ, Lerch JP, Soorya LV, Wang AT et al (2013) Effects of age and symptomatology on cortical thickness in autism spectrum disorders. Res Autism Spectr Disord 7(1):141–150

    Article  PubMed  PubMed Central  Google Scholar 

  72. Irimia A, Torgerson CM, Jacokes ZJ, Van Horn JD (2017) The connectomes of males and females with autism spectrum disorder have significantly different white matter connectivity densities. Sci Rep 7:46401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Courchesne E, Campbell K, Solso S (2011) Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Res 1380:138–145

    Article  CAS  PubMed  Google Scholar 

  74. Rojas D, Peterson E, Winterrowd E, Reite M, Rogers S, Tregellas J (2006) Regional gray matter volumetric changes in autism associated with social and repetitive behavior symptoms. BMC Psychiatry 6:56

    Article  PubMed  PubMed Central  Google Scholar 

  75. Misaki M, Wallace GL, Dankner N, Martin A, Bandettini PA (2012) Characteristic cortical thickness patterns in adolescents with autism spectrum disorders: interactions with age and intellectual ability revealed by canonical correlation analysis. Neuroimage 60(3):1890–1901

    Article  PubMed  Google Scholar 

  76. McAlonan G, Daly E, Kumari V, Critchley H, van Amelsvoort T, Suckling J et al (2002) Brain anatomy and sensorimotor gating in Asperger’s syndrome. Brain 125:1594–1606

    Article  PubMed  Google Scholar 

  77. Zhao X, Zhu S, Cao Y, Cheng P, Lin Y, Sun Z et al (2022) Abnormalities of gray matter volume and its correlation with clinical symptoms in adolescents with high-functioning autism spectrum disorder. Neuropsychiatr Dis Treat 18:717–730

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mosner MG, McLaurin RE, Kinard JL, Hakimi S, Parelman J, Shah JS et al (2019) Neural mechanisms of reward prediction error in autism spectrum disorder. Autism Res Treat 2019:5469191

    PubMed  PubMed Central  Google Scholar 

  79. Schmitz N, Rubia K, van Amelsvoort T, Daly E, Smith A, Murphy DG (2008) Neural correlates of reward in autism. Br J Psychiatry 192(1):19–24

    Article  PubMed  Google Scholar 

  80. Dichter GS, Felder JN, Green SR, Rittenberg AM, Sasson NJ, Bodfish JW (2012) Reward circuitry function in autism spectrum disorders. Soc Cogn Affect Neurosci 7(2):160–172

    Article  PubMed  Google Scholar 

  81. Hadjikhani N, Joseph RM, Snyder J, Tager-Flusberg H (2006) Anatomical differences in the mirror neuron system and social cognition network in autism. Cereb Cortex 16(9):1276–1282

    Article  PubMed  Google Scholar 

  82. Noppari T, Sun L, Lukkarinen L, Putkinen V, Tani P, Lindberg N et al (2022) Brain structural alterations in autism and criminal psychopathy. NeuroImage Clin 35:103116

    Article  PubMed  PubMed Central  Google Scholar 

  83. Aminoff EM, Kveraga K, Bar M (2013) The role of the parahippocampal cortex in cognition. Trends Cogn Sci 17(8):379–390

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mouga S, Duarte IC, Cafe C, Sousa D, Duque F, Oliveira G et al (2022) Parahippocampal deactivation and hyperactivation of central executive, saliency and social cognition networks in autism spectrum disorder. J Neurodev Disord 14(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zhao X, Zhu S, Cao Y, Cheng P, Lin Y, Sun Z et al (2022) Regional homogeneity of adolescents with high-functioning autism spectrum disorder and its association with symptom severity. Brain Behav 12(8):e2693

    Article  PubMed  PubMed Central  Google Scholar 

  86. Abbott AE, Linke AC, Nair A, Jahedi A, Alba LA, Keown CL et al (2018) Repetitive behaviors in autism are linked to imbalance of corticostriatal connectivity: a functional connectivity MRI study. Soc Cogn Affect Neurosci 13(1):32–42

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Medical and Health Science and Technology Development Plan of Shandong Province (202003061210), the Key Research and Development Plan of Jining City (2021YXNS024), the Cultivation Plan of High-level Scientific Research Projects of Jining Medical University (JYGC2021KJ006), the National Natural Science Foundation of China (81901358), the Natural Science Foundation of Shandong Province (ZR2019BH001 and ZR2021YQ55), the Young Taishan Scholars of Shandong Province (tsqn201909146), the Postgraduate Education and Teaching Reform Research Project of Shandong Province (SDYJG19212), and the Supporting Fund for Teachers’ Research of Jining Medical University (600903001).

Author information

Authors and Affiliations

Authors

Contributions

Liancheng Shen: Investigation, formal analysis, data curation, writing-original draft. Junqing Zhang: Methodology, visualization, investigation. Shiran Fan: Methodology, validation. Liangliang Ping: Software, validation. Hao Yu: Project administration, supervision. Fangfang Xu: Validation. Yuqi Cheng: Conceptualization, review & editing. Xiufeng Xu: Conceptualization, review & editing. Chunyan Yang: Writing - review & editing, supervision. Cong Zhou: Conceptualization, writing-review & editing, visualization. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Chunyan Yang or Cong Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, L., Zhang, J., Fan, S. et al. Cortical thickness abnormalities in autism spectrum disorder. Eur Child Adolesc Psychiatry 33, 65–77 (2024). https://doi.org/10.1007/s00787-022-02133-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00787-022-02133-0

Keywords

Navigation