Skip to main content

Advertisement

Log in

Cognitive reserve and its correlates in child and adolescent offspring of patients diagnosed with schizophrenia or bipolar disorder

  • Original Contribution
  • Published:
European Child & Adolescent Psychiatry Aims and scope Submit manuscript

Abstract

Aim

To analyze cognitive reserve (CR) in child and adolescent offspring of patients diagnosed with schizophrenia (SZ-off) or bipolar disorder (BD-off) and compare them with a group of community controls (CC-off). We also aimed to investigate whether there was an association between CR and clinical and neuropsychological variables according to group.

Methods

The study included 46 SZ-off, 105 BD-off and 102 CC-off. All participants completed assessments regarding CR and clinical, neuropsychological and psychosocial functioning. CR was measured with a proxy based on premorbid intelligence, parental occupational level, educational attainment, developmental milestones and sociability. The clinical assessment included the Kiddie Schedule for Affective Disorders and Schizophrenia, Present and Lifetime, the Semi-structured Interview for Prodromal Syndromes, and the Global Assessment Functioning scale. The neuropsychological assessment included measures of executive functioning, attention, verbal memory, working memory and processing speed.

Results

SZ-off showed a lower level of CR compared to BD-off and CC-off, while BD-off showed an intermediate level of CR between SZ-off and CC-off. Moreover, an association between higher CR and less lifetime psychopathology, fewer prodromal psychotic symptoms, higher psychosocial functioning, and a higher working memory score was observed in all groups, but it was stronger in SZ-off.

Conclusions

CR seemed to be associated with psychopathology, clinical symptoms, psychosocial functioning, and some cognitive functions. SZ-off appeared to benefit more from a higher CR, therefore it could be considered a protective factor against the development of clinical symptomatology and cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  1. Cardno AG, Marshall EJ, Coid B et al (1999) Heritability estimates for psychotic disorders: the Maudsley Twin psychosis series. Arch Gen Psychiatry 56:162–168. https://doi.org/10.1001/archpsyc.56.2.162

    Article  CAS  PubMed  Google Scholar 

  2. McGuffin P, Tandon K, Corsico A (2003) Linkage and association studies of schizophrenia. Curr Psychiatry Rep 5:121–127

    Article  PubMed  Google Scholar 

  3. Lichtenstein P, Yip BH, Björk C et al (2009) Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373:234–239. https://doi.org/10.1016/S0140-6736(09)60072-6

    Article  CAS  PubMed  Google Scholar 

  4. Rasic D, Hajek T, Alda M, Uher R (2014) Risk of mental illness in offspring of parents with schizophrenia, bipolar disorder, and major depressive disorder: a meta-analysis of family high-risk studies. Schizophr Bull 40:28–38. https://doi.org/10.1093/schbul/sbt114

    Article  PubMed  Google Scholar 

  5. Ruderfer DM, Fanous AH, Ripke S et al (2014) Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia. Mol Psychiatry 19:1017–1024. https://doi.org/10.1038/mp.2013.138

    Article  CAS  PubMed  Google Scholar 

  6. Kendler KS, Ohlsson H, Sundquist J, Sundquist K (2020) An extended Swedish national adoption study of bipolar disorder illness and cross-generational familial association with schizophrenia and major depression. JAMA Psychiat 77:814–822. https://doi.org/10.1001/jamapsychiatry.2020.0223

    Article  Google Scholar 

  7. Sanchez-Gistau V, Romero S, Moreno D et al (2015) Psychiatric disorders in child and adolescent offspring of patients with schizophrenia and bipolar disorder: a controlled study. Schizophr Res 168:197–203. https://doi.org/10.1016/j.schres.2015.08.034

    Article  PubMed  Google Scholar 

  8. Sugranyes G, de La Serna E, Borras R et al (2017) Clinical, cognitive, and neuroimaging evidence of a neurodevelopmental continuum in offspring of probands with schizophrenia and bipolar disorder. Schizophr Bull 43:1208–1219. https://doi.org/10.1093/schbul/sbx002

    Article  PubMed  PubMed Central  Google Scholar 

  9. Keshavan M, Montrose DM, Rajarethinam R et al (2008) Psychopathology among offspring of parents with schizophrenia: Relationship to premorbid impairments. Schizophr Res 103:114–120. https://doi.org/10.1016/j.schres.2008.03.006

    Article  PubMed  PubMed Central  Google Scholar 

  10. de La Serna E, Baeza I, Andrés S et al (2011) Comparison between young siblings and offspring of subjects with schizophrenia: clinical and neuropsychological characteristics. Schizophr Res 131:35–42. https://doi.org/10.1016/j.schres.2011.06.015

    Article  PubMed  Google Scholar 

  11. de la Serna E, Ilzarbe D, Sugranyes G et al (2021) Lifetime psychopathology in child and adolescent offspring of parents diagnosed with schizophrenia or bipolar disorder: a 2-year follow-up study. Eur Child Adolesc Psychiatry 30:117–129. https://doi.org/10.1007/s00787-020-01500-z

    Article  PubMed  Google Scholar 

  12. Singh MK, DelBello MP, Stanford KE et al (2007) Psychopathology in children of bipolar parents. J Affect Disord 102:131–136. https://doi.org/10.1016/j.jad.2007.01.004

    Article  PubMed  Google Scholar 

  13. Vandeleur C, Rothen S, Gholam-Rezaee M et al (2012) Mental disorders in offspring of parents with bipolar and major depressive disorders. Bipolar Disord 14:641–653. https://doi.org/10.1111/j.1399-5618.2012.01048.x

    Article  PubMed  PubMed Central  Google Scholar 

  14. Birmaher B, Axelson D, Monk K et al (2009) Lifetime psychiatric disorders in school-aged offspring of parents with bipolar disorder the Pittsburgh bipolar offspring study. Arch Gen Psychiatry 66:287–296. https://doi.org/10.1001/archgenpsychiatry.2008.546

    Article  PubMed  PubMed Central  Google Scholar 

  15. Petresco S, Gutt EK, Krelling R et al (2009) The prevalence of psychopathology in offspring of bipolar women from a Brazilian tertiary center. Rev Bras Psiquiatr 31:240–246. https://doi.org/10.1590/S1516-44462009000300009

    Article  PubMed  Google Scholar 

  16. Axelson D, Goldstein B, Goldstein T et al (2015) Diagnostic precursors to bipolar disorder in offspring of parents with bipolar disorder: a longitudinal study. Am J Psychiatry 172:638–646. https://doi.org/10.1176/appi.ajp.2014.14010035

    Article  PubMed  PubMed Central  Google Scholar 

  17. de la Serna E, Vila M, Sanchez-Gistau V et al (2016) Neuropsychological characteristics of child and adolescent offspring of patients with bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 65:54–59. https://doi.org/10.1016/j.pnpbp.2015.08.014

    Article  PubMed  Google Scholar 

  18. de la Serna E, Sugranyes G, Sanchez-Gistau V et al (2017) Neuropsychological characteristics of child and adolescent offspring of patients with schizophrenia or bipolar disorder. Schizophr Res 183:110–115. https://doi.org/10.1016/j.schres.2016.11.007

    Article  PubMed  Google Scholar 

  19. Maziade M, Rouleau N, Mérette C et al (2010) Verbal and visual memory impairments among young offspring and healthy adult relatives of patients with schizophrenia and bipolar disorder: Selective generational patterns indicate different developmental trajectories. Schizophr Bull 37:1218–1228. https://doi.org/10.1093/schbul/sbq026

    Article  PubMed  PubMed Central  Google Scholar 

  20. Maziade M, Rouleau N, Gingras N et al (2008) Shared neurocognitive dysfunctions in young offspring at extreme risk for schizophrenia or bipolar disorder in eastern Quebec multigenerational families. Schizophr Bull 35:919–930. https://doi.org/10.1093/schbul/sbn058

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ozan E, Deveci E, Oral M et al (2010) Neurocognitive functioning in a group of offspring genetically at high-risk for schizophrenia in Eastern Turkey. Brain Res Bull 82:218–223. https://doi.org/10.1016/j.brainresbull.2010.04.013

    Article  PubMed  Google Scholar 

  22. Klimes-Dougan B, Ronsaville D, Wiggs EA, Martinez PE (2006) Neuropsychological functioning in adolescent children of mothers with a history of bipolar or major depressive disorders. Biol Psychiat 60:957–965. https://doi.org/10.1016/j.biopsych.2006.03.031

    Article  PubMed  Google Scholar 

  23. Diwadkar VA, Goradia D, Hosanagar A et al (2011) Working memory and attention deficits in adolescent offspring of schizophrenia or bipolar patients: comparing vulnerability markers. Prog Neuropsychopharmacol Biol Psychiatry 35:1349–1354. https://doi.org/10.1016/j.pnpbp.2011.04.009

    Article  PubMed  PubMed Central  Google Scholar 

  24. Anaya C, Torrent C, Caballero FF et al (2016) Cognitive reserve in bipolar disorder: relation to cognition, psychosocial functioning and quality of life. Acta Psychiatr Scand 133:386–398

    Article  CAS  PubMed  Google Scholar 

  25. Hinrichs KH, Easter RE, Angers K et al (2017) Influence of cognitive reserve on neuropsychological functioning in bipolar disorder: findings from a 5-year longitudinal study. Bipolar Disord 19:50–59

    Article  PubMed  Google Scholar 

  26. Amoretti S, Bernardo M, Bonnin CM et al (2016) The impact of cognitive reserve in the outcome of first-episode psychoses: 2-year follow-up study. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol 26:1638–1648

    Article  CAS  Google Scholar 

  27. Amoretti S, Cabrera B, Torrent C et al (2018) Cognitive reserve as an outcome predictor: first-episode affective versus non-affective psychosis. Acta Psychiatr Scand 138:441–455

    Article  CAS  PubMed  Google Scholar 

  28. Darwish H, Farran N, Assaad S, Chaaya M (2018) Cognitive reserve factors in a developing country: education and occupational attainment lower the risk of dementia in a sample of Lebanese older adults. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2018.00277

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lee J, Park H, Chey J (2018) Education as a protective factor moderating the effect of depression on memory impairment in elderly women. Psychiatry Investig 15:70–77

    Article  PubMed  PubMed Central  Google Scholar 

  30. Staekenborg SS, Kelly N, Schuur J et al (2020) Education as proxy for cognitive reserve in a large elderly memory clinic: ‘window of benefit.’ J Alzheimer’s Dis 76:671–679. https://doi.org/10.3233/JAD-191332

    Article  Google Scholar 

  31. Stern Y (2002) What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 8:448–460

    Article  PubMed  Google Scholar 

  32. Baldivia B, Andrade VM, Bueno OFA (2008) Contribution of education, occupation and cognitively stimulating activities to the formation of cognitive reserve. Dementia Neuropsychol 2:173–182. https://doi.org/10.1590/S1980-57642009DN20300003

    Article  Google Scholar 

  33. Almeida-Meza P, Steptoe A, Cadar D (2021) Markers of cognitive reserve and dementia incidence in the English Longitudinal Study of Ageing. Br J Psychiatry 218:243–251. https://doi.org/10.1192/BJP.2020.54

    Article  PubMed  PubMed Central  Google Scholar 

  34. Clare L, Wu Y-T, Teale JC, et al (2017) Potentially modifiable lifestyle factors, cognitive reserve, and cognitive function in later life: A cross-sectional study. PLoS Med 14(3): e1002259

  35. Evans IEM, Llewellyn DJ, Matthews FE, et al (2018) Social isolation, cognitive reserve, and cognition in healthy older people. PLoS ONE 13(8):e0201008

  36. Fancourt D, Steptoe A, Cadar D (2018) Cultural engagement and cognitive reserve: museum attendance and dementia incidence over a 10-year period. Br J Psychiatry 213:661–663

    Article  PubMed  PubMed Central  Google Scholar 

  37. McHugh Power J, Tang J, Lawlor B et al (2018) Mediators of the relationship between social activities and cognitive function among older Irish adults: results from the Irish longitudinal study on ageing. Aging Ment Health 22:129–134

    Article  PubMed  Google Scholar 

  38. de la Serna E, Andrés-Perpiñá S, Puig O et al (2013) Cognitive reserve as a predictor of two year neuropsychological performance in early onset first-episode schizophrenia. Schizophr Res 143:125–131

    Article  PubMed  Google Scholar 

  39. Camprodon-Boadas P, de la Serna E, Baeza I et al (2020) Cognitive reserve in patients with first-episode psychosis as outcome predictor at 5-year follow-up. Eur Child Adolesc Psychiatry. https://doi.org/10.1007/s00787-020-01668-4

    Article  PubMed  Google Scholar 

  40. Scarmeas N, Stern Y (2003) Cognitive reserve and lifestyle. J Clin Exp Neuropsychol 25:625–633. https://doi.org/10.1076/jcen.25.5.625.14576

    Article  PubMed  PubMed Central  Google Scholar 

  41. Stern Y (2012) Cognitive reserve in ageing and Alzheimer’s disease. The Lancet Neurology 11:1006–1012

    Article  PubMed  PubMed Central  Google Scholar 

  42. Stern Y (2013) Cognitive reserve: implications for assessment and intervention NIH public access. Folia Phoniatr Logop 65:49–54. https://doi.org/10.1159/000353443

    Article  PubMed  Google Scholar 

  43. Barnett JH, Salmond CH, Jones PB, Sahakian BJ (2006) Cognitive reserve in neuropsychiatry. Psychol Med 36:1053–1064

    Article  CAS  PubMed  Google Scholar 

  44. Cheng S-T (2016) Cognitive reserve and the prevention of dementia: the role of physical and cognitive activities. Curr Psychiatry Rep 18:85

    Article  PubMed  PubMed Central  Google Scholar 

  45. Umarova RM (2017) Adapting the concepts of brain and cognitive reserve to post-stroke cognitive deficits: Implications for understanding neglect. Cortex J Devoted Study Nerv Syst Behav 97:327–338. https://doi.org/10.1016/j.cortex.2016.12.006

    Article  Google Scholar 

  46. Fuentes A, McKay C, Hay C (2010) Cognitive reserve in paediatric traumatic brain injury: relationship with neuropsychological outcome. Brain Inj 24:995–1002

    Article  PubMed  Google Scholar 

  47. Forcada I, Mur M, Mora E et al (2015) The influence of cognitive reserve on psychosocial and neuropsychological functioning in bipolar disorder. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol 25:214–222

    Article  CAS  Google Scholar 

  48. Grande I, Sanchez-Moreno J, Sole B et al (2017) High cognitive reserve in bipolar disorders as a moderator of neurocognitive impairment. J Affect Disord 208:621–627

    Article  CAS  PubMed  Google Scholar 

  49. Herrero P, Contador I, Stern Y et al (2020) Influence of cognitive reserve in schizophrenia: a systematic review. Neurosci Biobehav Rev 108:149–159

    Article  PubMed  Google Scholar 

  50. Jundong J, Kuja-Halkola R, Hultman C et al (2012) Poor school performance in offspring of patients with schizophrenia: what are the mechanisms? Psychol Med 42:111–123. https://doi.org/10.1017/S0033291711001127

    Article  CAS  PubMed  Google Scholar 

  51. Noguera A, Castro-Fornieles J, Romero S et al (2018) Attenuated psychotic symptoms in children and adolescent offspring of patients with schizophrenia. Schizophr Res 193:354–358. https://doi.org/10.1016/j.schres.2017.07.050

    Article  PubMed  Google Scholar 

  52. Ranning A, Laursen T, Agerbo E et al (2018) School performance from primary education in the adolescent offspring of parents with schizophrenia and bipolar disorder—a national, register-based study. Psychol Med 48:1993–2000. https://doi.org/10.1017/S0033291717003518

    Article  PubMed  Google Scholar 

  53. Morón-Nozaleda MG, Díaz-Caneja CM, Rodríguez-Toscano E et al (2017) A developmental approach to dimensional expression of psychopathology in child and adolescent offspring of parents with bipolar disorder. Eur Child Adolesc Psychiatry 26:1165–1175. https://doi.org/10.1007/s00787-017-0965-3

    Article  PubMed  Google Scholar 

  54. Schreiber H, Stolz-Born G, Heinrich H et al (1992) Attention, cognition, and motor perseveration in adolescents at genetic risk for schizophrenia and control subjects. Psychiatry Res 44:125–140. https://doi.org/10.1016/0165-1781(92)90047-7

    Article  CAS  PubMed  Google Scholar 

  55. Sharma A, Camilleri N, Grunze H et al (2017) Neuropsychological study of IQ scores in offspring of parents with bipolar I disorder. Cogn Neuropsychiatry 22:17–27. https://doi.org/10.1080/13546805.2016.1259103

    Article  PubMed  Google Scholar 

  56. Kaufman J, Birmaher B, Brent D et al (1997) Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): Initial reliability and validity data. J Am Acad Child Adolesc Psychiatry 36:980–988

    Article  CAS  PubMed  Google Scholar 

  57. First M, Spitzer R, Gibbon M, Williams J (1997) User’s guide for the Structured clinical interview for DSM-IV axis I disorders SCID-I: clinician version

  58. Miller TJ, McGlashan TH, Rosen JL et al (2002) Prospective diagnosis of the initial prodrome for schizophrenia based on the structured interview for prodromal syndromes: preliminary evidence of interrater reliability and predictive validity. Am J Psychiatry 159:863–865. https://doi.org/10.1176/appi.ajp.159.5.863

    Article  PubMed  Google Scholar 

  59. Hamilton M (1967) Development of a rating scale for primary depressive illness. Br J Soc Clin Psychol 6:278–296

    Article  CAS  PubMed  Google Scholar 

  60. Young RC, Biggs JT, Ziegler VE, Meyer DA (1978) A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry 133:429–435

    Article  CAS  PubMed  Google Scholar 

  61. Endicott J, Spitzer RL, Fleiss JL, Cohen J (1976) The global assessment scale: a procedure for measuring overall severity of psychiatric disturbance. Arch Gen Psychiatry 33:766–771

    Article  CAS  PubMed  Google Scholar 

  62. Heaton EP, Chelune GJ, Talley JL et al (1997) Winsconsin card sorting test. TEA ediciones, Madrid

    Google Scholar 

  63. Conners K (2000) Conners’ continuous performance test, CPT-II. MHS

  64. Wechsler D (2005) Wechsler intelligence scale for children. WISC-IV. TEA, Madrid

  65. Wechsler D (2012) Wechsler Adult Intelligence Scale: WAIS-IV, Original E. NCS Pearson, Madrid

    Google Scholar 

  66. Reynolds CR, Bigler ED, Edurne G (2001) TOMAL. Test de memoria y aprendizaje. TEA Ediciones, Madrid

    Google Scholar 

  67. Cannon-Spoor HE, Potkin SG, Wyatt RJ (1982) Measurement of premorbid adjustment in chronic schizophrenia. Schizophr Bull 8:470–484

    Article  CAS  PubMed  Google Scholar 

  68. Hollingshead AB, Redlich FC (2007) Social class and mental illness: a community study. Am J Public Health 97:1756–1757

    Article  CAS  PubMed  Google Scholar 

  69. Rommelse N, Antshel K, Smeets S et al (2017) High intelligence and the risk of ADHD and other psychopathology. Br J Psychiatry 211:359–364. https://doi.org/10.1192/bjp.bp.116.184382

    Article  PubMed  Google Scholar 

  70. Oliver-Parra A, Dalmau-Bueno A, Ruiz-Muñoz D, García-Altés A (2020) Relationship between parents’ mental disorders and socioeconomic status and offspring’s psychopathology: a cross-sectional study. PLoS ONE. https://doi.org/10.1371/journal.pone.0240681

    Article  PubMed  PubMed Central  Google Scholar 

  71. Amone-P’Olak K, Burger H, Huisman M et al (2011) Parental psychopathology and socioeconomic position predict adolescent offspring’s mental health independently and do not interact: the TRAILS study. J Epidemiol Community Health 65:57–63. https://doi.org/10.1136/jech.2009.092569

    Article  PubMed  Google Scholar 

  72. Sijtsema JJ, Verboom CE, Penninx BWJH et al (2014) Psychopathology and academic performance, social well-being, and social preference at school: The TRAILS study. Child Psychiatry Hum Dev 45:273–284. https://doi.org/10.1007/s10578-013-0399-1

    Article  CAS  PubMed  Google Scholar 

  73. Poletti M, Gebhardt E, Kvande MN et al (2019) Motor impairment and developmental psychotic risk: connecting the dots and narrowing the pathophysiological gap. Schizophr Bull 45:503–508. https://doi.org/10.1093/schbul/sby100

    Article  PubMed  Google Scholar 

  74. Toppelberg CO, Medrano L, Morgens LP, Nieto-Castañon A (2002) Bilingual children referred for psychiatric services: associations of language disorders, language skills, and psychopathology. J Am Acad Child Adolesc Psychiatry 41:712–722. https://doi.org/10.1097/00004583-200206000-00011

    Article  PubMed  Google Scholar 

  75. Bukowski WM, Adams R (2005) Peer relationships and psychopathology: markers, moderators, mediators, mechanisms, and meanings. J Clin Child Adolesc Psychol 34:3–10. https://doi.org/10.1207/s15374424jccp3401_1

    Article  PubMed  Google Scholar 

  76. de la Serna E, Camprodon-Boadas P, Ilzarbe D et al (2020) Neuropsychological development in the child and adolescent offspring of patients diagnosed with schizophrenia or bipolar disorder: a two-year follow-up comparative study. Prog Neuropsychopharmacol Biol Psychiatry. https://doi.org/10.1016/j.pnpbp.2020.109972

    Article  PubMed  Google Scholar 

  77. Seidman LJ, Giuliano AJ, Smith CW et al (2006) Neuropsychological functioning in adolescents and young adults at genetic risk for schizophrenia and affective psychoses: results from the Harvard and hillside adolescent high risk studies. Schizophr Bull 32:507–524. https://doi.org/10.1093/schbul/sbj078

    Article  PubMed  PubMed Central  Google Scholar 

  78. Andre J, Picchioni M, Zhang R, Toulopoulou T (2015) Working memory circuit as a function of increasing age in healthy adolescence: a systematic review and meta-analyses. NeuroImage Clin 12:940–948. https://doi.org/10.1016/j.nicl.2015.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  79. Stern Y (2009) Cognitive reserve. Neuropsychologia 47(10): 2015–28

  80. de la Serna E, Montejo L, Solé B et al (2021) Effectiveness of enhancing cognitive reserve in children, adolescents and young adults at genetic risk for psychosis: study protocol for a randomized controlled trial. Revista de Psiquiatría y Salud Mental. https://doi.org/10.1016/j.rpsm.2021.02.003

    Article  PubMed  Google Scholar 

  81. Bott NT, Hall A, Madero EN, et al (2019) Face-to-face and digital multidomain lifestyle interventions to enhance cognitive reserve and reduce risk of Alzheimer’s disease and related dementias: a review of completed and prospective studies. Nutrients 11(9):2258

  82. Moga DC, Beech BF, Abner EL et al (2019) INtervention for cognitive reserve enhancement in delaying the onset of Alzheimer’s Symptomatic Expression (INCREASE), a randomized controlled trial: rationale, study design, and protocol. Trials. https://doi.org/10.1186/s13063-019-3993-0

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bundy H, Stahl D, MacCabe JH (2011) A systematic review and meta-analysis of the fertility of patients with schizophrenia and their unaffected relatives. Acta Psychiatr Scand 123:98–106. https://doi.org/10.1111/j.1600-0447.2010.01623.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors of this report would like to thank the following organizations for their kind support: the Instituto de Salud Carlos III (INT19/0021), the Catalonia Government, the ERDF Funds from the European Commission, “A way of making Europe” and CIBERSAM. The authors would also like to thank the families who participated in this study.

Funding

This study was supported by the Spanish Ministry of Health, Instituto de Salud Carlos III (INT19/0021; PI070066; PI1100683; PI151500467; PI17/00741; PI18/00696), Fundació Marato TV3 (091630), the Catalonia Government (2017SGR881), PERIS (SLT006/17/00346), co-financed by ERDF Funds from the European Commission, “A way of making Europe”, CIBERSAM. GS has received funding from the Instituto de Salud Carlos III—Fondos FEDER "una manera de hacer Europa" (PI1800976), the Fundació Clínic Recerca Biomèdica (Ajut a la Recerca Pons Bartran 2018) and the Alicia Koplowitz Foundation (AKOPLOWITZ20_004). CT is funded by the Spanish Ministry of Economy and Competitiveness, ISCIII, through a ‘Miguel Servet’ postdoctoral contract (CPI14/00175) and a Miguel Servet II (CPII19/00018). These institutions had no further role in the study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Contributions

ES, JC, IB, GS and DM designed the study and wrote the protocol. PC, DI, MR, DM, CM, MA, JM and NM collected data. CT and CG identified patients with SZ or BD in adult psychiatry units who had child or adolescent offspring. PC managed the literature searches. ES, PC and RB undertook statistical analysis. PC wrote the first draft of the manuscript. JC and ES contributed to earlier versions of the manuscript. All authors contributed to and have approved the final version of the manuscript.

Corresponding author

Correspondence to Elena de la Serna.

Ethics declarations

Conflict of interest

Dr. Baeza has received honoraria or travel support to attend conferences from Angelini, Janssen and Otsuka-Lundbeck. Dr. Sugranyes has received funding from the Fundació Clínic Recerca Biomèdica (Ajut a la Recerca Pons Bartran), the Brain and Behaviour Research Foundation (NARSAD Young Investigator Award NARSAD17_YIG_02B), the Spanish Ministry of Health, Instituto de Salud Carlos III «Health Research Fund» fondos FEDER “Otra manera de hacer Europa” (PI18/00976), and the Alicia Koplowitz Foundation (AKOPLOWITZ20_004). The other authors do not report conflicts of interest.

Ethics approval

The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant institutional committee on human experimentation and with Helsinki Declaration of 1964 and its later amendments.

Consent to participate

Informed consent to participate in the study was obtained from all participants (or their parent or legal guardian in the case of children under 12).

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 141 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camprodon-Boadas, P., Rosa-Justicia, M., Sugranyes, G. et al. Cognitive reserve and its correlates in child and adolescent offspring of patients diagnosed with schizophrenia or bipolar disorder. Eur Child Adolesc Psychiatry 32, 1463–1473 (2023). https://doi.org/10.1007/s00787-022-01957-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00787-022-01957-0

Keywords

Navigation