Skip to main content

Advertisement

Log in

Interrelationships among growth hormone, thyroid function, and endocrine-disrupting chemicals on the susceptibility to attention-deficit/hyperactivity disorder

  • Original Contribution
  • Published:
European Child & Adolescent Psychiatry Aims and scope Submit manuscript

Abstract

Abnormal growth hormones and thyroid function may be linked to pathophysiology of attention-deficit/hyperactivity disorder (ADHD). Phthalates and bisphenol-A (BPA), two endocrine-disrupting chemicals (EDCs), may affect the human endocrine system. In this study, we aimed to perform a comprehensive investigation of whether growth hormone, thyroid function, and EDCs exhibited differential levels between ADHD patients and healthy controls. In total, 144 children with ADHD and 70 healthy control subjects were enrolled. Their endocrine systems were evaluated using the serum levels of insulin-like growth factor-1 (IGF-1), IGF-binding protein-3 (IGFBP-3), thyroid-stimulating hormone (TSH), triiodothyronine (T3), thyroxine (T4), and Free T4. The urinary levels of EDCs, including monoethyl phthalate (MEP), mono-methyl phthalate (MMP), monoethylhexyl phthalate (MEHP), mono-n-butyl phthalate (MnBP), monobenzyl phthalate (MBzP), and BPA, were also examined. Patients with ADHD had lower IGF-1 levels than healthy controls (p = 0.003), but we observed no significant difference in IGFBP-3, TSH, T3, T4, or Free T4. Compared to the control group, patients with ADHD demonstrated higher MEHP levels (p = 0.043), MnBP (p = 0.033), and MBzP (p = 0.040). Furthermore, MEHP levels (p < 0.001) and BPA levels (p = 0.041) were negatively correlated with IGF-1 levels, while IGF-1 levels were negatively correlated with principal components consisting of ADHD clinical symptoms and neuropsychological performance variables. We suggest that MEHP exposure may be associated with decreased serum levels of IGF-1 and increased risk of ADHD. The mechanism underlying this association may be important for protecting children from environmental chemicals that adversely affect neurodevelopment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Code availability

Requests for code can be made through the first author of this publication.

References

  1. Posner J, Polanczyk GV, Sonuga-Barke E (2020) Attention-deficit hyperactivity disorder. Lancet 395(10222):450–462

    Article  PubMed  PubMed Central  Google Scholar 

  2. Polanczyk GV, Salum GA, Sugaya LS, Caye A, Rohde LA (2015) Annual research review: a meta-analysis of the worldwide prevalence of mental disorders in children and adolescents. J Child Psychol Psychiatry 56(3):345–365

    Article  PubMed  Google Scholar 

  3. Thomas R, Sanders S, Doust J, Beller E, Glasziou P (2015) Prevalence of attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. Pediatrics 135(4):e994–e1001

    Article  PubMed  Google Scholar 

  4. Chen YL, Chen WJ, Lin KC, Shen LJ, Gau SS (2019) Prevalence of DSM-5 mental disorders in a nationally representative sample of children in Taiwan: methodology and main findings. Epidemiol Psychiatr Sci 29:e15

    Article  PubMed  PubMed Central  Google Scholar 

  5. Retz W, Ginsberg Y, Turner D, Barra S, Retz-Junginger P, Larsson H et al (2020) Attention-Deficit/Hyperactivity Disorder (ADHD), antisociality and delinquent behavior over the lifespan. Neurosci Biobehav Rev 120:236–248

    Article  PubMed  Google Scholar 

  6. Nilsen FM, Tulve NS (2020) A systematic review and meta-analysis examining the inter-relationships between chemical and non-chemical stressors and inherent characteristics in children with ADHD. Environ Res 180:108884

    Article  CAS  PubMed  Google Scholar 

  7. Tenore A, Tenore A (2012) A pathophysiologic approach to growth problems in children with attention-deficit/hyperactivity disorder. Endocrinol Metab Clin North Am 41(4):761–784

    Article  PubMed  Google Scholar 

  8. Rubia K, Alegria AA, Brinson H (2014) Brain abnormalities in attention-deficit hyperactivity disorder: a review. Rev Neurol 58(Suppl 1):S3-16

    PubMed  Google Scholar 

  9. Fairchild G (2012) Hypothalamic-pituitary-adrenocortical axis function in attention-deficit hyperactivity disorder. Curr Top Behav Neurosci 9:93–111

    Article  CAS  PubMed  Google Scholar 

  10. Buske-Kirschbaum A, Schmitt J, Plessow F, Romanos M, Weidinger S, Roessner V (2013) Psychoendocrine and psychoneuroimmunological mechanisms in the comorbidity of atopic eczema and attention deficit/hyperactivity disorder. Psychoneuroendocrinology 38(1):12–23

    Article  CAS  PubMed  Google Scholar 

  11. Laron Z (2001) Insulin-like growth factor 1 (IGF-1): a growth hormone. Mol Pathol 54(5):311–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lewitt MS, Boyd GW (2019) The role of insulin-like growth factors and insulin-like growth factor-binding proteins in the nervous system. Biochem Insights 12:1–18

    Article  Google Scholar 

  13. Blum WF, Alherbish A, Alsagheir A, El Awwa A, Kaplan W, Koledova E et al (2018) The growth hormone-insulin-like growth factor-I axis in the diagnosis and treatment of growth disorders. Endocr Connect 7(6):R212–R222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bereket A, Turan S, Karaman MG, Haklar G, Ozbay F, Yazgan MY (2005) Height, weight, IGF-I, IGFBP-3 and thyroid functions in prepubertal children with attention deficit hyperactivity disorder: effect of methylphenidate treatment. Horm Res 63(4):159–164

    CAS  PubMed  Google Scholar 

  15. Kim WJ, Bang YR, Kang JW, Yoo JH, Kim SH, Park JH (2020) Preliminary investigation of association between methylphenidate and serum growth markers in children with attention-deficit/hyperactivity disorder: a cross-sectional case-control study. Soa Chongsonyon Chongsin Uihak 31(3):154–160

    PubMed  PubMed Central  Google Scholar 

  16. Chambers T, Anney R, Taylor PN, Teumer A, Peeters RP, Medici M et al (2020) Effects of thyroid status on regional brain volumes: a diagnostic and genetic imaging study in UK Biobank. J Clin Endocrinol Metab 106(3):688–696

    Article  PubMed Central  Google Scholar 

  17. Albrecht D, Ittermann T, Thamm M, Grabe HJ, Bahls M, Volzke H (2020) The association between thyroid function biomarkers and attention deficit hyperactivity disorder. Sci Rep 10(1):18285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alvarez-Pedrerol M, Ribas-Fito N, Torrent M, Julvez J, Ferrer C, Sunyer J (2007) TSH concentration within the normal range is associated with cognitive function and ADHD symptoms in healthy preschoolers. Clin Endocrinol (Oxf) 66(6):890–898

    Article  CAS  PubMed  Google Scholar 

  19. Kuppili PP, Pattanayak RD, Sagar R, Mehta M, Vivekanandhan S (2017) Thyroid and cortisol hormones in attention deficit hyperactivity disorder: a case-control study. Asian J Psychiatr 28:73–77

    Article  PubMed  Google Scholar 

  20. Drover SSM, Villanger GD, Aase H, Skogheim TS, Longnecker MP, Zoeller RT et al (2019) Maternal thyroid function during pregnancy or neonatal thyroid function and attention deficit hyperactivity disorder: a systematic review. Epidemiology 30(1):130–144

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ghassabian A, Bongers-Schokking JJ, de Rijke YB, van Mil N, Jaddoe VW, de Muinck Keizer-Schrama SM et al (2012) Maternal thyroid autoimmunity during pregnancy and the risk of attention deficit/hyperactivity problems in children: the Generation R study. Thyroid 22(2):178–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pakkila F, Mannisto T, Pouta A, Hartikainen AL, Ruokonen A, Surcel HM et al (2014) The impact of gestational thyroid hormone concentrations on ADHD symptoms of the child. J Clin Endocrinol Metab 99(1):E1-8

    Article  PubMed  Google Scholar 

  23. Modesto T, Tiemeier H, Peeters RP, Jaddoe VW, Hofman A, Verhulst FC et al (2015) Maternal mild thyroid hormone insufficiency in early pregnancy and attention-deficit/hyperactivity disorder symptoms in children. JAMA Pediatr 169(9):838–845

    Article  PubMed  Google Scholar 

  24. Tran NQV, Miyake K (2017) Neurodevelopmental disorders and environmental toxicants: epigenetics as an underlying mechanism. Int J Genomics 2017:7526592

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kim JI, Kim JW, Shin I, Kim BN (2021) Interaction of DRD4 methylation and phthalate metabolites affects continuous performance test performance in ADHD. J Atten Disord 25(2):161–170

    Article  PubMed  Google Scholar 

  26. Braun JM (2017) Early-life exposure to EDCs: role in childhood obesity and neurodevelopment. Nat Rev Endocrinol 13(3):161–173

    Article  CAS  PubMed  Google Scholar 

  27. Radke EG, Braun JM, Nachman RM, Cooper GS (2020) Phthalate exposure and neurodevelopment: a systematic review and meta-analysis of human epidemiological evidence. Environ Int 137:105408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Praveena SM, Munisvaradass R, Masiran R, Rajendran RK, Lin CC, Kumar S (2020) Phthalates exposure and attention-deficit/hyperactivity disorder in children: a systematic review of epidemiological literature. Environ Sci Pollut Res Int 27(36):44757–44770

    Article  CAS  PubMed  Google Scholar 

  29. Shoaff JR, Coull B, Weuve J, Bellinger DC, Calafat AM, Schantz SL et al (2020) Association of exposure to endocrine-disrupting chemicals during adolescence with attention-deficit/hyperactivity disorder-related behaviors. JAMA Netw Open 3(8):e2015041

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sears CG, Braun JM (2020) Phthalate exposure, adolescent health, and the need for primary prevention. Endocrinol Metab Clin North Am 49(4):759–770

    Article  PubMed  Google Scholar 

  31. Hu D, Wang YX, Chen WJ, Zhang Y, Li HH, Xiong L et al (2017) Associations of phthalates exposure with attention deficits hyperactivity disorder: a case-control study among Chinese children. Environ Pollut 229:375–385

    Article  CAS  PubMed  Google Scholar 

  32. Won EK, Kim Y, Ha M, Burm E, Kim YS, Lim H et al (2016) Association of current phthalate exposure with neurobehavioral development in a national sample. Int J Hyg Environ Health 219(4–5):364–371

    Article  CAS  PubMed  Google Scholar 

  33. Tsai CS, Chou WJ, Lee SY, Lee MJ, Chou MC, Wang LJ (2020) Phthalates, Para-Hydroxybenzoic Acids, Bisphenol-A, and gonadal hormones’ effects on susceptibility to attention-deficit/hyperactivity disorder. Toxics 8(3):57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ku HY, Tsai TL, Wang PL, Su PH, Sun CW, Wang CJ et al (2020) Prenatal and childhood phthalate exposure and attention deficit hyperactivity disorder traits in child temperament: a 12-year follow-up birth cohort study. Sci Total Environ 699:134053

    Article  CAS  PubMed  Google Scholar 

  35. Mustieles V, D’Cruz SC, Couderq S, Rodriguez-Carrillo A, Fini JB, Hofer T et al (2020) Bisphenol A and its analogues: a comprehensive review to identify and prioritize effect biomarkers for human biomonitoring. Environ Int 144:105811

    Article  CAS  PubMed  Google Scholar 

  36. Arbuckle TE, Davis K, Boylan K, Fisher M, Fu J (2016) Processed data for CHMS 2007–2009: Bisphenol A, phthalates and lead and learning and behavioral problems in Canadian children 6–19 years of age. Data Brief 8:784–802

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jensen TK, Mustieles V, Bleses D, Frederiksen H, Trecca F, Schoeters G et al (2019) Prenatal bisphenol A exposure is associated with language development but not with ADHD-related behavior in toddlers from the Odense Child Cohort. Environ Res 170:398–405

    Article  CAS  PubMed  Google Scholar 

  38. Mughal BB, Fini JB, Demeneix BA (2018) Thyroid-disrupting chemicals and brain development: an update. Endocr Connect 7(4):R160–R186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang PC, Chang WH, Wu MT, Chen ML, Wang IJ, Shih SF et al (2020) Characterization of phthalate exposure in relation to serum thyroid and growth hormones, and estimated daily intake levels in children exposed to phthalate-tainted products: a longitudinal cohort study. Environ Pollut 264:114648

    Article  CAS  PubMed  Google Scholar 

  40. Graceli JB, Dettogni RS, Merlo E, Nino O, da Costa CS, Zanol JF et al (2020) The impact of endocrine-disrupting chemical exposure in the mammalian hypothalamic-pituitary axis. Mol Cell Endocrinol 518:110997

    Article  CAS  PubMed  Google Scholar 

  41. Baker BH, Wu H, Laue HE, Boivin A, Gillet V, Langlois MF et al (2020) Methylparaben in meconium and risk of maternal thyroid dysfunction, adverse birth outcomes, and Attention-Deficit Hyperactivity Disorder (ADHD). Environ Int 139:105716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders 5th ed (DSM-5). American Psychiatric Association, Washington, DC, USA

    Book  Google Scholar 

  43. Blount BC, Milgram KE, Silva MJ, Malek NA, Reidy JA, Needham LL et al (2000) Quantitative detection of eight phthalate metabolites in human urine using HPLC-APCI-MS/MS. Anal Chem 72(17):4127–4134

    Article  CAS  PubMed  Google Scholar 

  44. Zhang S, Faries DE, Vowles M, Michelson D (2005) ADHD Rating Scale IV: psychometric properties from a multinational study as a clinician-administered instrument. Int J Methods Psychiatr Res 14(4):186–201

    Article  CAS  PubMed  Google Scholar 

  45. Baron IS (2005) Test review: Wechsler intelligence scale for children-fourth edition (WISC-IV). Child Neuropsychol 11(5):471–475

    Article  PubMed  Google Scholar 

  46. Bussing R, Fernandez M, Harwood M, Wei H, Garvan CW, Eyberg SM et al (2008) Parent and teacher SNAP-IV ratings of attention deficit hyperactivity disorder symptoms: psychometric properties and normative ratings from a school district sample. Assessment 15(3):317–328

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tu MC, Lo CP, Huang CF, Huang WH, Deng JF, Hsu YH (2018) Visual attention performances and related cerebral microstructural integrity among subjects with subjective cognitive decline and mild cognitive impairment. Front Aging Neurosci 10:268

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rassovsky Y, Alfassi T (2018) Attention improves during physical exercise in individuals with ADHD. Front Psychol 9:2747

    Article  PubMed  Google Scholar 

  49. Lahti J, Raikkonen K, Kajantie E, Heinonen K, Pesonen AK, Jarvenpaa AL et al (2006) Small body size at birth and behavioural symptoms of ADHD in children aged five to six years. J Child Psychol Psychiatry 47(11):1167–1174

    Article  CAS  PubMed  Google Scholar 

  50. Gunnell D, Miller LL, Rogers I, Holly JM, Team AS (2005) Association of insulin-like growth factor I and insulin-like growth factor-binding protein-3 with intelligence quotient among 8- to 9-year-old children in the Avon Longitudinal Study of Parents and Children. Pediatrics 116(5):e681-686

    Article  PubMed  Google Scholar 

  51. Elia J, Gulotta C, Rose SR, Marin G, Rapoport JL (1994) Thyroid function and attention-deficit hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 33(2):169–172

    Article  CAS  PubMed  Google Scholar 

  52. Bao J, Zeng XW, Qin XD, Lee YL, Chen X, Jin YH et al (2015) Phthalate metabolites in urine samples from school children in Taipei, Taiwan. Arch Environ Contam Toxicol 69(2):202–207

    Article  CAS  PubMed  Google Scholar 

  53. Huang PC, Tsai CH, Chen CC, Wu MT, Chen ML, Wang SL et al (2017) Intellectual evaluation of children exposed to phthalate-tainted products after the 2011 Taiwan phthalate episode. Environ Res 156:158–166

    Article  CAS  PubMed  Google Scholar 

  54. Huang PC, Tsai CH, Liang WY, Li SS, Pan WH, Chiang HC (2015) Age and gender differences in urinary levels of eleven phthalate metabolites in general Taiwanese population after a dEHP Episode. PLoS ONE 10(7):e0133782

    Article  PubMed  PubMed Central  Google Scholar 

  55. Weiss JM, Gustafsson A, Gerde P, Bergman A, Lindh CH, Krais AM (2018) Daily intake of phthalates, MEHP, and DINCH by ingestion and inhalation. Chemosphere 208:40–49

    Article  CAS  PubMed  Google Scholar 

  56. Meeker JD (2012) Exposure to environmental endocrine disruptors and child development. Arch Pediatr Adolesc Med 166(10):952–958

    Article  PubMed  Google Scholar 

  57. Reinsberg J, Wegener-Toper P, van der Ven K, van der Ven H, Klingmueller D (2009) Effect of mono-(2-ethylhexyl) phthalate on steroid production of human granulosa cells. Toxicol Appl Pharmacol 239(1):116–123

    Article  CAS  PubMed  Google Scholar 

  58. Kim BN, Cho SC, Kim Y, Shin MS, Yoo HJ, Kim JW et al (2009) Phthalates exposure and attention-deficit/hyperactivity disorder in school-age children. Biol Psychiatry 66(10):958–963

    Article  CAS  PubMed  Google Scholar 

  59. Engel SM, Villanger GD, Nethery RC, Thomsen C, Sakhi AK, Drover SSM et al (2018) Prenatal phthalates, maternal thyroid function, and risk of attention-deficit hyperactivity disorder in the norwegian mother and child cohort. Environ Health Perspect 126(5):057004

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fu Y, Dong J, Wang J, You M, Wei L, Fu H et al (2018) Developmental exposure to Di-(2-ethylhexyl) phthalate induces cerebellar granule cell apoptosis via the PI3K/AKT signaling pathway. Exp Neurobiol 27(6):472–488

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gari M, Koch HM, Palmke C, Jankowska A, Wesolowska E, Hanke W et al (2019) Determinants of phthalate exposure and risk assessment in children from Poland. Environ Int 127:742–753

    Article  CAS  PubMed  Google Scholar 

  62. Antshel KM, Russo N (2019) Autism spectrum disorders and ADHD: overlapping phenomenology, diagnostic issues, and treatment considerations. Curr Psychiatry Rep 21(5):34

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Wei-Tsun Soong for granting us the use of the Chinese version of the K-SADS and Professor Shur-Fen Gau for granting our use of the Chinese version of the SNAP-IV.

Funding

This work was supported by the Chang Gung Memorial Hospital Research Projects (phthalates and BPA screening was funded by CMRPG8K1281; growth hormones and thyroid function assessments were supported by CMRPG8J0361).

Author information

Authors and Affiliations

Authors

Contributions

WLJ participated in interpreting data, reviewing references, and drafting the manuscript. YHH, WJC, SYL, and HYC participated in data collection and patient recruitment. CCC and HRC contribute equally to this study, and they participated in protocol development and revised the manuscript. All authors read and approved the final manuscript and contributed to the drafting and revising of the paper.

Corresponding author

Correspondence to Liang-Jen Wang.

Ethics declarations

Conflicts of interest

All authors declare no conflicts of interest.

Ethics approval

This study was approved by the Chang Gung Memorial Hospital review board (IRB No. 201900376A3).

Consent to participate

We obtained a copy of written informed consent from each of all the participants, including 144 patients with ADHD and 70 healthy control subjects.

Consent for publication

All authors consented for publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 99 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LJ., Huang, YH., Chou, WJ. et al. Interrelationships among growth hormone, thyroid function, and endocrine-disrupting chemicals on the susceptibility to attention-deficit/hyperactivity disorder. Eur Child Adolesc Psychiatry 32, 1391–1401 (2023). https://doi.org/10.1007/s00787-021-01886-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00787-021-01886-4

Keywords

Navigation