Skip to main content

Advertisement

Log in

Synergy between artificial intelligence and precision medicine for computer-assisted oral and maxillofacial surgical planning

  • Review
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The aim of this review was to investigate the application of artificial intelligence (AI) in maxillofacial computer-assisted surgical planning (CASP) workflows with the discussion of limitations and possible future directions.

Materials and methods

An in-depth search of the literature was undertaken to review articles concerned with the application of AI for segmentation, multimodal image registration, virtual surgical planning (VSP), and three-dimensional (3D) printing steps of the maxillofacial CASP workflows.

Results

The existing AI models were trained to address individual steps of CASP, and no single intelligent workflow was found encompassing all steps of the planning process. Segmentation of dentomaxillofacial tissue from computed tomography (CT)/cone-beam CT imaging was the most commonly explored area which could be applicable in a clinical setting. Nevertheless, a lack of generalizability was the main issue, as the majority of models were trained with the data derived from a single device and imaging protocol which might not offer similar performance when considering other devices. In relation to registration, VSP and 3D printing, the presence of inadequate heterogeneous data limits the automatization of these tasks.

Conclusion

The synergy between AI and CASP workflows has the potential to improve the planning precision and efficacy. However, there is a need for future studies with big data before the emergent technology finds application in a real clinical setting.

Clinical relevance

The implementation of AI models in maxillofacial CASP workflows could minimize a surgeon’s workload and increase efficiency and consistency of the planning process, meanwhile enhancing the patient-specific predictability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mesko B (2017) The role of artificial intelligence in precision medicine. Expert Rev Precis Med Drug Dev 2:239–241. https://doi.org/10.1080/23808993.2017.1380516

    Article  Google Scholar 

  2. Hopp WJ, Li J, Wang G (2018) Big data and the precision medicine revolution. Prod Oper Manag 27:1647–1664. https://doi.org/10.1111/poms.12891

    Article  Google Scholar 

  3. Kim YJ, Kelley BP, Nasser JS, Chung KC (2019) Implementing precision medicine and artificial intelligence in plastic surgery: concepts and future prospects. Plast Reconstr Surg - Glob Open 7:e2113. https://doi.org/10.1097/GOX.0000000000002113

    Article  PubMed  PubMed Central  Google Scholar 

  4. Joskowicz L (2017) Computer-aided surgery meets predictive, preventive, and personalized medicine. EPMA J 8:1–4. https://doi.org/10.1007/s13167-017-0084-8

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ahmed Z, Mohamed K, Zeeshan S, Dong XQ (2020) Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database (Oxford) 2020: 1–35. https://doi.org/10.1093/database/baaa010

  6. Sharaf B, Levine JP, Hirsch DL et al (2010) Importance of computer-aided design and manufacturing technology in the multidisciplinary approach to head and neck reconstruction. J Craniofac Surg 21:1277–1280. https://doi.org/10.1097/SCS.0b013e3181e1b5d8

    Article  PubMed  Google Scholar 

  7. Fu X, Qiao J, Girod S et al (2017) Standardized protocol for virtual surgical plan and 3-dimensional surgical template-assisted single-stage mandible contour surgery. Ann Plast Surg 79:236–242. https://doi.org/10.1097/SAP.0000000000001149

    Article  PubMed  Google Scholar 

  8. Efanov JI, Roy AA, Huang KN, Borsuk DE (2018) Virtual surgical planning: the pearls and pitfalls. Plast Reconstr Surg - Glob Open 6:e1443. https://doi.org/10.1097/GOX.0000000000001443

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stranix JT, Stern CS, Rensberger M et al (2019) A virtual surgical planning algorithm for delayed maxillomandibular reconstruction. Plast Reconstr Surg 143:1197–1206. https://doi.org/10.1097/PRS.0000000000005452

    Article  PubMed  PubMed Central  Google Scholar 

  10. Flügge T, Ludwig U, Hövener JB et al (2020) Virtual implant planning and fully guided implant surgery using magnetic resonance imaging—proof of principle. Clin Oral Implants Res 31:575–583. https://doi.org/10.1111/clr.13592

    Article  PubMed  Google Scholar 

  11. Donaldson CD, Manisali M, Naini FB (2021) Three-dimensional virtual surgical planning (3D-VSP) in orthognathic surgery: advantages, disadvantages and pitfalls. J Orthod 48:52–63. https://doi.org/10.1177/1465312520954871

    Article  PubMed  Google Scholar 

  12. Steinbacher DM (2015) Three-dimensional analysis and surgical planning in craniomaxillofacial surgery. J Oral Maxillofac Surg 73:S40–S56. https://doi.org/10.1016/j.joms.2015.04.038

    Article  PubMed  Google Scholar 

  13. Pfaff MJ, Steinbacher DM (2016) Plastic surgery applications using three-dimensional planning and computer-assisted design and manufacturing. Plast Reconstr Surg 137:603e–616e. https://doi.org/10.1097/01.prs.0000479970.22181.53

    Article  PubMed  Google Scholar 

  14. Steinhuber T, Brunold S, Gärtner C et al (2018) Is virtual surgical planning in orthognathic surgery faster than conventional planning? A time and workflow analysis of an office-based workflow for single- and double-jaw surgery. J Oral Maxillofac Surg 76:397–407. https://doi.org/10.1016/j.joms.2017.07.162

    Article  PubMed  Google Scholar 

  15. Yuan P, Mai H, Li J et al (2017) Design, development and clinical validation of computer-aided surgical simulation system for streamlined orthognathic surgical planning. Int J Comput Assist Radiol Surg 12:2129–2143. https://doi.org/10.1007/s11548-017-1585-6

    Article  PubMed  PubMed Central  Google Scholar 

  16. Knoops PGM, Papaioannou A, Borghi A et al (2019) A machine learning framework for automated diagnosis and computer-assisted planning in plastic and reconstructive surgery. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-49506-1

    Article  Google Scholar 

  17. Murphy DC, Saleh DB (2020) Artificial Intelligence in plastic surgery: What is it? Where are we now? What is on the horizon? Ann R Coll Surg Engl 102:577–580. https://doi.org/10.1308/RCSANN.2020.0158

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hung K, Montalvao C, Tanaka R et al (2019) The use and performance of artificial intelligence applications in dental and maxillofacial radiology: a systematic review. Dentomaxillofacial Radiol 49:20190107. https://doi.org/10.1259/dmfr.20190107

    Article  Google Scholar 

  19. Khanagar SB, Naik S, Al Kheraif AA et al (2021) Application and performance of artificial intelligence technology in oral cancer diagnosis and prediction of prognosis: a systematic review. Diagnostics 11:1004. https://doi.org/10.3390/diagnostics11061004

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yan K-X, Liu L, Li H (2021) Application of machine learning in oral and maxillofacial surgery. Artif Intell Med Imaging 2:104–114. https://doi.org/10.35711/aimi.v2.i6.104

    Article  Google Scholar 

  21. Shujaat S, Bornstein MM, Price JB, Jacobs R (2021) Integration of imaging modalities in digital dental workflows - possibilities, limitations, and potential future developments. Dentomaxillofacial Radiol 50:20210268. https://doi.org/10.1259/dmfr.20210268

    Article  Google Scholar 

  22. Leite AF, Vasconcelos KD, Willems H et al (2020) Radiomics and machine learning in oral healthcare. Proteomics Clin Appl 14(3):e1900040. https://doi.org/10.1002/prca.201900040

    Article  PubMed  Google Scholar 

  23. Singh GD, Singh M (2021) Virtual surgical planning: modeling from the present to the future. J Clin Med 10(23):5655. https://doi.org/10.3390/jcm10235655

    Article  PubMed  PubMed Central  Google Scholar 

  24. van Eijnatten M, Koivisto J, Karhu K et al (2017) The impact of manual threshold selection in medical additive manufacturing. Int J Comput Assist Radiol Surg 12:607–615. https://doi.org/10.1007/s11548-016-1490-4

    Article  PubMed  Google Scholar 

  25. Hung K, Yeung AWK, Tanaka R, Bornstein MM (2020) Current applications, opportunities, and limitations of AI for 3D imaging in dental research and practice. Int J Environ Res Public Health 17:1–18. https://doi.org/10.3390/ijerph17124424

    Article  Google Scholar 

  26. Nagarajappa A, Dwivedi N, Tiwari R (2015) Artifacts: the downturn of CBCT image. J Int Soc Prev Community Dent 5:440. https://doi.org/10.4103/2231-0762.170523

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jacobs R, Salmon B, Codari M et al (2018) Cone beam computed tomography in implant dentistry: recommendations for clinical use. BMC Oral Health 18:88. https://doi.org/10.1186/S12903-018-0523-5

    Article  PubMed  PubMed Central  Google Scholar 

  28. Weiss R, Read-Fuller A (2019) Cone beam computed tomography in oral and maxillofacial surgery: an evidence-based review. Dent J 7:52. https://doi.org/10.3390/dj7020052

    Article  Google Scholar 

  29. Gaêta-Araujo H, Alzoubi T, de Faria VK et al (2020) Cone beam computed tomography in dentomaxillofacial radiology: a two-decade overview. Dentomaxillofacial Radiol 49:20200145. https://doi.org/10.1259/DMFR.20200145

    Article  Google Scholar 

  30. Luo D, Zeng W, Chen J, Tang W (2021) Deep learning for automatic image segmentation in stomatology and its clinical application. Front Med Technol 3:68. https://doi.org/10.3389/fmedt.2021.767836

    Article  Google Scholar 

  31. Dot G, Schouman T, Dubois G et al (2022) Fully automatic segmentation of craniomaxillofacial CT scans for computer-assisted orthognathic surgery planning using the nnU-Net framework. Eur Radiol 32:3639–3648. https://doi.org/10.1007/s00330-021-08455-y

    Article  PubMed  Google Scholar 

  32. Leonardi R, Giudice AL, Farronato M et al (2021) Fully automatic segmentation of sinonasal cavity and pharyngeal airway based on convolutional neural networks. Am J Orthod Dentofacial Orthop 159:824-835.e1. https://doi.org/10.1016/j.ajodo.2020.05.017

    Article  PubMed  Google Scholar 

  33. Shujaat S, Jazil O, Willems H et al (2021) Automatic segmentation of the pharyngeal airway space with convolutional neural network. J Dent 111:103705. https://doi.org/10.1016/j.jdent.2021.103705

    Article  PubMed  Google Scholar 

  34. Lo Giudice A, Ronsivalle V, Spampinato C et al (2021) Fully automatic segmentation of the mandible based on convolutional neural networks (CNNs). Orthod Craniofac Res 2:100–107. https://doi.org/10.1111/ocr.12536

    Article  Google Scholar 

  35. Morgan N, Van Gerven A, Smolders A et al (2022) Convolutional neural network for automatic maxillary sinus segmentation on cone-beam computed tomographic images. Sci Rep 12:7523. https://doi.org/10.1038/s41598-022-11483-3

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang H, Minnema J, Batenburg KJ et al (2021) Multiclass CBCT image segmentation for orthodontics with deep learning. J Dent Res 100:943–949. https://doi.org/10.1177/00220345211005338

    Article  PubMed  Google Scholar 

  37. Cui Z, Fang Y, Mei L et al (2022) A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images. Nat Commun 13:2096. https://doi.org/10.1038/s41467-022-29637-2

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lahoud P, EzEldeen M, Beznik T et al (2021) Artificial intelligence for fast and accurate 3-dimensional tooth segmentation on cone-beam computed tomography. J Endod 47:827–835. https://doi.org/10.1016/j.joen.2020.12.020

    Article  PubMed  Google Scholar 

  39. Yang fa W, Su YX (2021) Artificial intelligence-enabled automatic segmentation of skull CT facilitates computer-assisted craniomaxillofacial surgery. Oral Oncol 118:105360. https://doi.org/10.1016/j.oraloncology.2021.105360

    Article  Google Scholar 

  40. Verhelst PJ, Smolders A, Beznik T et al (2021) Layered deep learning for automatic mandibular segmentation in cone-beam computed tomography. J Dent 114:103786. https://doi.org/10.1016/j.jdent.2021.103786

    Article  PubMed  Google Scholar 

  41. Shaheen E, Leite A, Alqahtani KA et al (2021) A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography A validation study: deep learning for teeth segmentation and classification. J Dent 115:103865. https://doi.org/10.1016/j.jdent.2021.103865

    Article  PubMed  Google Scholar 

  42. Lahoud P, Diels S, Niclaes L et al (2022) Development and validation of a novel artificial intelligence driven tool for accurate mandibular canal segmentation on CBCT. J Dent 116:103891. https://doi.org/10.1016/j.jdent.2021.103891

    Article  PubMed  Google Scholar 

  43. Kearney V, Chan JW, Valdes G et al (2018) The application of artificial intelligence in the IMRT planning process for head and neck cancer. Oral Oncol 87:111–116. https://doi.org/10.1016/j.oraloncology.2018.10.026

    Article  PubMed  Google Scholar 

  44. Minnema J, van Eijnatten M, Hendriksen AA et al (2019) Segmentation of dental cone-beam CT scans affected by metal artifacts using a mixed-scale dense convolutional neural network. Med Phys 46:5027–5035. https://doi.org/10.1002/mp.13793

    Article  PubMed  Google Scholar 

  45. Fontenele RC, do Nascimento Gerhardt M, Pinto JC, et al (2022) Influence of dental fillings and tooth type on the performance of a novel artificial intelligence-driven tool for automatic tooth segmentation on CBCT images–a validation study. J Dent 119:104069. https://doi.org/10.1016/j.jdent.2022.104069

    Article  PubMed  Google Scholar 

  46. Wang L, Gao Y, Shi F et al (2016) Automated segmentation of dental CBCT image with prior-guided sequential random forests. Med Phys 43:336–346. https://doi.org/10.1118/1.4938267

    Article  PubMed  Google Scholar 

  47. Liu Z, Liu X, Xiao B et al (2020) Segmentation of organs-at-risk in cervical cancer CT images with a convolutional neural network. Phys Medica 69:184–191. https://doi.org/10.1016/j.ejmp.2019.12.008

    Article  Google Scholar 

  48. El-Gamal FEZA, Elmogy M, Atwan A (2016) Current trends in medical image registration and fusion. Egypt Informatics J 17:99–124. https://doi.org/10.1016/j.eij.2015.09.002

    Article  Google Scholar 

  49. Qin C, Mai Y, Chen X (2021) Registration in oral and maxillofacial surgery. In: Egger J, Chen X (eds) Computer-aided oral and maxillofacial surgery: developments, applications, and future perspectives, 1st edn. Elsevier Science Publishing, Academic Press, San Diego, p 29–54. https://doi.org/10.1016/b978-0-12-823299-6.00002-x

  50. Dai J, Wang X, Dong Y et al (2012) Two- and three-dimensional models for the visualization of jaw tumors based on CT-MRI image fusion. J Craniofac Surg 23:502–508. https://doi.org/10.1097/SCS.0b013e31824cd433

    Article  PubMed  Google Scholar 

  51. Jang TJ, Yun HS, Kim J-E, et al (2021) Fully automatic integration of dental CBCT images and full-arch intraoral impressions with stitching error correction via individual tooth segmentation and identification. arXiv preprint. https://arxiv.org/abs/2112.01784

  52. Loeffelbein DJ, Kesting MR, Mielke E et al (2007) Bildfusion von SPECT und CT als präzisierende Diagnostik von malignen Tumoren im Mund-Kiefer-Gesichtsbereich. Mund - Kiefer - und Gesichtschirurgie 11:33–41. https://doi.org/10.1007/s10006-006-0039-z

    Article  Google Scholar 

  53. Ayoub AF, Xiao Y, Khambay B et al (2007) Towards building a photo-realistic virtual human face for craniomaxillofacial diagnosis and treatment planning. Int J Oral Maxillofac Surg 36:423–428. https://doi.org/10.1016/j.ijom.2007.02.003

    Article  PubMed  Google Scholar 

  54. Maal TJJ, Plooij JM, Rangel FA et al (2008) The accuracy of matching three-dimensional photographs with skin surfaces derived from cone-beam computed tomography. Int J Oral Maxillofac Surg 37:641–646. https://doi.org/10.1016/J.IJOM.2008.04.012

    Article  PubMed  Google Scholar 

  55. Baan F, Bruggink R, Nijsink J et al (2020) Fusion of intra-oral scans in cone-beam computed tomography scans. Clin Oral Investig 25:77–85. https://doi.org/10.1007/s00784-020-03336-y

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chung M, Lee J, Song W et al (2020) Automatic registration between dental cone-beam CT and scanned surface via deep pose regression neural networks and clustered similarities. IEEE Trans Med Imaging 39:3900–3909. https://doi.org/10.1109/TMI.2020.3007520

    Article  PubMed  Google Scholar 

  57. Flügge T, Derksen W, te Poel J et al (2017) Registration of cone beam computed tomography data and intraoral surface scans – a prerequisite for guided implant surgery with CAD/CAM drilling guides. Clin Oral Implants Res 28:1113. https://doi.org/10.1111/CLR.12925

    Article  PubMed  Google Scholar 

  58. Li J, Wang Y, Wang S et al (2021) Landmark-guided rigid registration for temporomandibular joint MRI-CBCT images with large field-of-view difference. Lect Notes Comput Sci 12966(LNCS):527–536. https://doi.org/10.1007/978-3-030-87589-3_54

    Article  Google Scholar 

  59. Chen Z, Mo S, Fan X et al (2021) A meta-analysis and systematic review comparing the effectiveness of traditional and virtual surgical planning for orthognathic surgery: based on randomized clinical trials. J Oral Maxillofac Surg 79:471.e1-471.e19. https://doi.org/10.1016/j.joms.2020.09.005

    Article  PubMed  Google Scholar 

  60. Vannier MW, Marsh JL, Warren JO (1984) Three dimensional CT reconstruction images for reconstruction images for craniofacial surgical planning and evaluation. Radiology 150:179–184. https://doi.org/10.1148/radiology.150.1.6689758

    Article  PubMed  Google Scholar 

  61. De Riu G, Virdis PI, Meloni SM et al (2018) Accuracy of computer-assisted orthognathic surgery. J Cranio-Maxillofacial Surg 46:293–298. https://doi.org/10.1016/j.jcms.2017.11.023

    Article  Google Scholar 

  62. ter Horst R, van Weert H, Loonen T et al (2021) Three-dimensional virtual planning in mandibular advancement surgery: soft tissue prediction based on deep learning. J Cranio-Maxillofacial Surg 49:775–782. https://doi.org/10.1016/j.jcms.2021.04.001

    Article  Google Scholar 

  63. Wu J, Heike C, Birgfeld C et al (2016) Measuring symmetry in children with unrepaired cleft lip: defining a standard for the three-dimensional midfacial reference plane. Cleft Palate-Craniofacial J 53:695–704. https://doi.org/10.1597/15-053

    Article  Google Scholar 

  64. da Silva RDC, Jenkyn TR, Carranza VA (2021) Convolutional neural networks and geometric moments to identify the bilateral symmetric midplane in facial skeletons from CT scans. Biology (Basel) 10:1–15. https://doi.org/10.3390/biology10030182

    Article  Google Scholar 

  65. Wang C, Zhu X, Hong JC, Zheng D (2019) Artificial intelligence in radiotherapy treatment planning: present and future. Technol Cancer Res Treat 18: 1–11. https://doi.org/10.1177/1533033819873922

  66. Lee S, Yang J, Han J (2012) Development of a decision making system for selection of dental implant abutments based on the fuzzy cognitive map. Expert Syst Appl 39:11564–11575. https://doi.org/10.1016/j.eswa.2012.04.032

    Article  Google Scholar 

  67. Polášková A, Feberová J, Dostálová T, et al (2013) Clinical decision support system in dental implant planning. Mefanet J 1:11–14. https://mj.mefanet.cz/mj-01130312

  68. Szejka AL, Rudek M, Canciglieri Jr O (2013) A reasoning system to support the dental implant planning process. In: Stjepandić J, Rock G, Bil C (eds) Concurrent engineering approaches for sustainable product development in a multi-disciplinary environment. Proceedings of the 19th ISPE International Conference on Concurrent Engineering, 1st edn. Springer, London, pp 909–919. https://doi.org/10.1007/978-1-4471-4426-7_77

  69. Sadighpour L, Rezaei S, Paknejad M et al (2014) The application of an artificial neural network to support decision making in edentulous maxillary implant prostheses. J Res Pract Dent 2014:i1–i10. https://doi.org/10.5171/2014.369025

  70. Bayrakdar SK, Orhan K, Bayrakdar IS et al (2021) A deep learning approach for dental implant planning in cone-beam computed tomography images. BMC Med Imaging 21:1–9. https://doi.org/10.1186/s12880-021-00618-z

    Article  Google Scholar 

  71. Alsomali M, Alghamdi S, Alotaibi S et al (2022) Development of a deep learning model for automatic localization of radiographic markers of proposed dental implant site locations. Saudi Dent J 34:220–225. https://doi.org/10.1016/j.sdentj.2022.01.002

  72. Teizer J, Blickle A, King T, et al (2018) BIM for 3D printing in construction. In: Borrmann A, König M, Koch C, Beetz J (eds) Building information modeling: technology foundations and industry practice, 1st edn, Springer, Switzerland, pp 421–446. https://doi.org/10.1007/978-3-319-92862-3_26

  73. Shilo D, Emodi O, Blanc O et al (2018) Printing the future—updates in 3D printing for surgical applications. Rambam Maimonides Med J 9:e0020. https://doi.org/10.5041/RMMJ.10343

    Article  PubMed  PubMed Central  Google Scholar 

  74. Li J, Gsaxner C, Pepe A et al (2021) Synthetic skull bone defects for automatic patient-specific craniofacial implant design. Sci Data 8:1–8. https://doi.org/10.1038/s41597-021-00806-0

    Article  Google Scholar 

  75. Kodym O, Španěl M, Herout A (2021) Deep learning for cranioplasty in clinical practice: going from synthetic to real patient data. Comput Biol Med 137:104766. https://doi.org/10.1016/j.compbiomed.2021.104766

    Article  PubMed  Google Scholar 

  76. Mine Y, Suzuki S, Eguchi T, Murayama T (2020) Applying deep artificial neural network approach to maxillofacial prostheses coloration. J Prosthodont Res 64:296–300. https://doi.org/10.1016/j.jpor.2019.08.006

    Article  PubMed  Google Scholar 

  77. Baumann FW, Sekulla A, Hassler M et al (2018) Trends of machine learning in additive manufacturing. Int J Rapid Manuf 7:310. https://doi.org/10.1504/ijrapidm.2018.095788

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohaib Shujaat.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shujaat, S., Riaz, M. & Jacobs, R. Synergy between artificial intelligence and precision medicine for computer-assisted oral and maxillofacial surgical planning. Clin Oral Invest 27, 897–906 (2023). https://doi.org/10.1007/s00784-022-04706-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-022-04706-4

Keywords

Navigation