Skip to main content

Advertisement

Log in

Design, development and clinical validation of computer-aided surgical simulation system for streamlined orthognathic surgical planning

  • Review Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

There are many proven problems associated with traditional surgical planning methods for orthognathic surgery. To address these problems, we developed a computer-aided surgical simulation (CASS) system, the AnatomicAligner, to plan orthognathic surgery following our streamlined clinical protocol.

Methods

The system includes six modules: image segmentation and three-dimensional (3D) reconstruction, registration and reorientation of models to neutral head posture, 3D cephalometric analysis, virtual osteotomy, surgical simulation, and surgical splint generation. The accuracy of the system was validated in a stepwise fashion: first to evaluate the accuracy of AnatomicAligner using 30 sets of patient data, then to evaluate the fitting of splints generated by AnatomicAligner using 10 sets of patient data. The industrial gold standard system, Mimics, was used as the reference.

Result

When comparing the results of segmentation, virtual osteotomy and transformation achieved with AnatomicAligner to the ones achieved with Mimics, the absolute deviation between the two systems was clinically insignificant. The average surface deviation between the two models after 3D model reconstruction in AnatomicAligner and Mimics was 0.3 mm with a standard deviation (SD) of 0.03 mm. All the average surface deviations between the two models after virtual osteotomy and transformations were smaller than 0.01 mm with a SD of 0.01 mm. In addition, the fitting of splints generated by AnatomicAligner was at least as good as the ones generated by Mimics.

Conclusion

We successfully developed a CASS system, the AnatomicAligner, for planning orthognathic surgery following the streamlined planning protocol. The system has been proven accurate. AnatomicAligner will soon be available freely to the boarder clinical and research communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bell WH (1980) Surgical correction of dentofacial deformities. WB Saunders, Philadelphia

    Google Scholar 

  2. Bell WH (1992) Modern practice in orthognathic and reconstructive surgery. WB Saunders, Philadelphia

    Google Scholar 

  3. Xia JJ, Gateno J, Teichgraeber JF (2009) New clinical protocol to evaluate craniomaxillofacial deformity and plan surgical correction. J Oral Maxillofac Surg 67(10):2093–2106

    Article  PubMed  PubMed Central  Google Scholar 

  4. Altobelli DE, Kikinis R, Mulliken JB, Cline H, Lorensen W, Jolesz F (1993) Computer-assisted three-dimensional planning in craniofacial surgery. Plast Reconstr Surg 92(4):576–585 (discussion 586–577)

    Article  CAS  PubMed  Google Scholar 

  5. Montgomery K, Stephanides M, Schendel S (2000) Development and application of a virtual environment for reconstructive surgery. Comput Aided Surg 5(2):90–97. doi:10.1002/1097-0150(2000) 5:2<90::AID-IGS3<3.0.CO;2-7

    Article  CAS  PubMed  Google Scholar 

  6. Xia J, Wang D, Samman N, Yeung RW, Tideman H (2000) Computer-assisted three-dimensional surgical planning and simulation: 3D color facial model generation. Int J Oral Maxillofac Surg 29(1):2–10

    Article  CAS  PubMed  Google Scholar 

  7. Xia J, Ip HH, Samman N, Wang D, Kot CS, Yeung RW, Tideman H (2000) Computer-assisted three-dimensional surgical planning and simulation: 3D virtual osteotomy. Int J Oral Maxillofac Surg 29(1):11–17

    Article  CAS  PubMed  Google Scholar 

  8. Xia J, Ip HH, Samman N, Wong HT, Gateno J, Wang D, Yeung RW, Kot CS, Tideman H (2001) Three-dimensional virtual-reality surgical planning and soft-tissue prediction for orthognathic surgery. IEEE Trans Inf Technol Biomed 5(2):97–107

    Article  CAS  PubMed  Google Scholar 

  9. Xia J, Samman N, Yeung RW, Wang D, Shen SG, Ip HH, Tideman H (2000) Computer-assisted three-dimensional surgical planing and simulation. 3D soft tissue planning and prediction. Int J Oral Maxillofac Surg 29(4):250–258

    Article  CAS  PubMed  Google Scholar 

  10. Xia JJ, Gateno J, Teichgraeber JF (2005) Three-dimensional computer-aided surgical simulation for maxillofacial surgery. Atlas Oral Maxillofac Surg Clin North Am 13(1):25–39

    Article  PubMed  Google Scholar 

  11. Swennen GR, Schutyser F (2006) Three-dimensional cephalometry: spiral multi-slice vs cone-beam computed tomography. Am J Orthod Dentofacial Orthop 130(3):410–416

    Article  PubMed  Google Scholar 

  12. Swennen GR, Barth EL, Eulzer C, Schutyser F (2007) The use of a new 3D splint and double CT scan procedure to obtain an accurate anatomic virtual augmented model of the skull. Int J Oral Maxillofac Surg 36(2):146–152

    Article  CAS  PubMed  Google Scholar 

  13. Gateno J, Xia JJ, Teichgraeber JF, Christensen AM, Lemoine JJ, Liebschner MA, Gliddon MJ, Briggs ME (2007) Clinical feasibility of computer-aided surgical simulation (CASS) in the treatment of complex cranio-maxillofacial deformities. J Oral Maxillofac Surg 65(4):728–734

    Article  PubMed  Google Scholar 

  14. Sadiq Z, Collyer J, Sneddon K, Walsh S (2012) Orthognathic treatment of asymmetry: two cases of “waferless” stereotactic maxillary positioning. Br J Oral Maxillofac Surg 50(2):e27–29. doi:10.1016/j.bjoms.2011.07.016

    Article  PubMed  Google Scholar 

  15. Polley JW, Figueroa AA (2013) Orthognathic positioning system: intraoperative system to transfer virtual surgical plan to operating field during orthognathic surgery. J Oral Maxillofac Surg 71(5):911–920. doi:10.1016/j.joms.2012.11.004

    Article  PubMed  Google Scholar 

  16. Bobek S, Farrell B, Choi C, Farrell B, Weimer K, Tucker M (2015) Virtual surgical planning for orthognathic surgery using digital data transfer and an intraoral fiducial marker: the charlotte method. J Oral Maxillofac Surg 73(6):1143–1158. doi:10.1016/j.joms.2014.12.008

    Article  PubMed  Google Scholar 

  17. Ullah R, Turner PJ, Khambay BS (2015) Accuracy of three-dimensional soft tissue predictions in orthognathic surgery after Le Fort I advancement osteotomies. Br J Oral Maxillofac Surg 53(2):153–157. doi:10.1016/j.bjoms.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  18. Li B, Shen SG, Yu H, Li J, Xia JJ, Wang X (2016) A new design of CAD/CAM surgical template system for two-piece narrowing genioplasty. Int J Oral Maxillofac Surg 45(5):560–566. doi:10.1016/j.ijom.2015.10.013

    Article  CAS  PubMed  Google Scholar 

  19. Chen X, Xu L, Sun Y, Politis C (2016) A review of computer-aided oral and maxillofacial surgery: planning, simulation and navigation. Expert Rev Med Devices 13(11):1043–1051. doi:10.1080/17434440.2016.1243054

    Article  CAS  PubMed  Google Scholar 

  20. Xia JJ, Gateno J, Teichgraeber JF, Yuan P, Chen KC, Li J, Zhang X, Tang Z, Alfi DM (2015) Algorithm for planning a double-jaw orthognathic surgery using a computer-aided surgical simulation (CASS) protocol. Part 1: planning sequence. Int J Oral Maxillofac Surg 44(12):1431–1440. doi:10.1016/j.ijom.2015.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gateno J, Xia J, Teichgraeber JF, Rosen A (2003) A new technique for the creation of a computerized composite skull model. J Oral Maxillofac Surg 61(2):222–227

    Article  PubMed  Google Scholar 

  22. Schatz EC, Xia JJ, Gateno J, English JD, Teichgraeber JF, Garrett FA (2010) Development of a technique for recording and transferring natural head position in 3 dimensions. J Craniofac Surg 21(5):1452–1455. doi:10.1097/SCS.0b013e3181ebcd0a

    Article  PubMed  Google Scholar 

  23. Xia JJ, McGrory JK, Gateno J, Teichgraeber JF, Dawson BC, Kennedy KA, Lasky RE, English JD, Kau CH, McGrory KR (2011) A new method to orient 3-dimensional computed tomography models to the natural head position: a clinical feasibility study. J Oral Maxillofac Surg 69(3):584–591. doi:10.1016/j.joms.2010.10.034

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gateno J, Xia JJ, Teichgraeber JF (2011) New 3-dimensional cephalometric analysis for orthognathic surgery. J Oral Maxillofac Surg 69(3):606–622. doi:10.1016/j.joms.2010.09.010

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xia JJ, Gateno J, Teichgraeber JF, Yuan P, Li J, Chen KC, Jajoo A, Nicol M, Alfi DM (2015) Algorithm for planning a double-jaw orthognathic surgery using a computer-aided surgical simulation (CASS) protocol. Part 2: three-dimensional cephalometry. Int J Oral Maxillofac Surg 44(12):1441–1450. doi:10.1016/j.ijom.2015.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gateno J, Jajoo A, Nicol M, Xia JJ (2016) The primal sagittal plane of the head: a new concept. Int J Oral Maxillofac Surg 45(3):399–405. doi:10.1016/j.ijom.2015.11.013

    Article  CAS  PubMed  Google Scholar 

  27. Gateno J, Xia J, Teichgraeber JF, Rosen A, Hultgren B, Vadnais T (2003) The precision of computer-generated surgical splints. J Oral Maxillofac Surg 61(7):814–817

    Article  PubMed  Google Scholar 

  28. Hsu SS, Gateno J, Bell RB, Hirsch DL, Markiewicz MR, Teichgraeber JF, Zhou X, Xia JJ (2013) Accuracy of a computer-aided surgical simulation protocol for orthognathic surgery: a prospective multicenter study. J Oral Maxillofac Surg 71(1):128–142. doi:10.1016/j.joms.2012.03.027

    Article  PubMed  Google Scholar 

  29. Schwartz HC (2014) Does computer-aided surgical simulation improve efficiency in bimaxillary orthognathic surgery? Int J Oral Maxillofac Surg 43(5):572–576. doi:10.1016/j.ijom.2013.10.018

    Article  CAS  PubMed  Google Scholar 

  30. Yuan P, Ho DC-Y, Chang C-M, Li J, Mai H, Kim D, Shen S, Zhang X, Zhou X, Xiong Z, Gateno J, Xia JJ (2016) A novel computer-aided surgical simulation (CASS) system for streamline orthognathic surgical planning. In: Paper presented at the 7th international conference of medical imaging and augmented reality (MIAR) (2016) Bern, Switzerland. August 24–26, 2016

  31. Schatz EC (2006) A new technique for recording natural head position in three dimensions (MS thesis). The University of Texas Health Science Center at Houston, Houston. Xia JJ, English JD, Garrett FA, et al, Advisors

  32. Lorensen WE, Cline HE Marching cubes: A high resolution 3D surface construction algorithm. In: SIGGRAPH ’87 proceedings of the 14th annual conference on computer graphics and interactive techniques, New York, NY, 1987. ACM SIGGRAPH Computer Graphics

  33. Xia J, Samman N, Yeung RW, Shen SG, Wang D, Ip HH, Tideman H (2000) Three-dimensional virtual reality surgical planning and simulation workbench for orthognathic surgery. Int J Adult Orthod Orthognath Surg 15(4):265–282

    CAS  Google Scholar 

  34. Damstra J, Fourie Z, Ren Y (2010) Simple technique to achieve a natural position of the head for cone beam computed tomography. Br J Oral Maxillofac Surg 48(3):236–238. doi:10.1016/j.bjoms.2009.10.001

    Article  PubMed  Google Scholar 

  35. Athanasiou AE (1995) Orthodontic cephalometry. Mosby-Wolfe, St. Louis

    Google Scholar 

  36. Gateno J, Xia JJ, Teichgraeber JF (2011) Effect of facial asymmetry on 2-dimensional and 3-dimensional cephalometric measurements. J Oral Maxillofac Surg 69(3):655–662. doi:10.1016/j.joms.2010.10.046

    Article  PubMed  PubMed Central  Google Scholar 

  37. Swennen GR, Schutyser F, Barth EL, De Groeve P, De Mey A (2006) A new method of 3-D cephalometry Part I: the anatomic Cartesian 3-D reference system. J Craniofac Surg 17(2):314–325

    Article  PubMed  Google Scholar 

  38. Zelditch ML, Swiderski DL, Sheets HD (2012) Geometric morphometrics for biologists: a primer. Elsevier, London

    Google Scholar 

  39. Li J, Yuan P, Chang C-M, Ho DC-Y, Lo Y-F, Shen S, Kim D, Teichgraeber JF, Alfi DM, Gateno J, Xia JJ (2017) New approach to establish an object reference frame for dental arch in computer-aided surgical simulation (CASS). Int J Oral Maxillofac Surg (in press)

  40. Gottschalk S, Lin MC, Manocha D (1996) OBBTree: a hierarchical structure for rapid interference detection. Paper presented at the proceedings of ACM Siggraph ’96

  41. Chang YB, Xia JJ, Gateno J, Xiong Z, Zhou X, Wong ST (2010) An automatic and robust algorithm of reestablishment of digital dental occlusion. IEEE Trans Med Imaging 29(9):1652–1663. doi:10.1109/TMI.2010.2049526

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chang YB, Xia JJ, Gateno J, Xiong Z, Teichgraeber JF, Lasky RE, Zhou X (2012) In vitro evaluation of new approach to digital dental model articulation. J Oral Maxillofac Surg 70(4):952–962. doi:10.1016/j.joms.2011.02.109

    Article  PubMed  Google Scholar 

  43. Xia JJ, Chang YB, Gateno J, Xiong Z, Zho X (2010) Automated digital dental articulation. Med Image Comput Comput Assist Interv 13(Pt 3):278–286

    PubMed  PubMed Central  Google Scholar 

  44. Li J, Ferraz F, Shen S, Lo Y-F, Zhang X, Yuan P, Tang Z, Chen K-C, Gateno J, Zhou X, Xia JJ (2015) Automated three-piece digital dental articulation. In: Navab N, Hornegger J, Wells WM, Frangi AF (eds) Medical image computing and computer-assisted intervention—MICCAI 2015, lecture notes in computer science, Munich, Germany, October 5–9, 2015. Springer, pp 488-496

  45. Nadjmi N, Mollemans W, Daelemans A, Van Hemelen G, Schutyser F, Berge S (2010) Virtual occlusion in planning orthognathic surgical procedures. Int J Oral Maxillofac Surg 39(5):457–462. doi:10.1016/j.ijom.2010.02.002

    Article  CAS  PubMed  Google Scholar 

  46. Meller S, Nkenke E, Kalender WA (2005) Statistical face models ofr the prediction of soft-tissue deformations after orthognathic osteotomies. MICCAI LNCS 3750:443–450

    Google Scholar 

  47. Keeve E, Girod S, Kikinis R, Girod B (1998) Deformable modeling of facial tissue for craniofacial surgery simulation. Comput Aided Surg 3(5):228–238

    Article  CAS  PubMed  Google Scholar 

  48. Nedel LP, Thalmann D (1998) Real time muscle deformations using mass-spring systems. In: Proceedings of the Computer Graphics International, Hannover, Germany, pp 156–166

  49. Chen F, Gu L, Huang P, Zhang J, Xu J (2007) Soft tissue modeling using nonlinear mass spring and simplified medial representation. Conf Proc IEEE Eng Med Biol Soc 2007:5083–5086

    PubMed  Google Scholar 

  50. Maal TJ, Plooij JM, Rangel FA, Mollemans W, Schutyser FA, Berge SJ (2008) The accuracy of matching three-dimensional photographs with skin surfaces derived from cone-beam computed tomography. Int J Oral Maxillofac Surg 37(7):641–646

    Article  CAS  PubMed  Google Scholar 

  51. Marchetti C, Bianchi A, Bassi M, Gori R, Lamberti C, Sarti A (2006) Mathematical modeling and numerical simulation in maxillo-facial virtual surgery (VISU). J Craniofac Surg 17(4):661–667 (discussion 668)

    Article  PubMed  Google Scholar 

  52. Marchetti C, Bianchi A, Bassi M, Gori R, Lamberti C, Sarti A (2007) Mathematical modeling and numerical simulation in maxillofacial virtual surgery. J Craniofac Surg 18(4):826–832

    Article  PubMed  Google Scholar 

  53. Cover SA, Ezquerra NF, O’Brien JF (1993) Interactively deformable models for surgery simulation. IEEE Comput Graph Appl 13:68–75

    Article  Google Scholar 

  54. Gori R, Sarti A, Lamberti C, Fares JE, Marchetti C (2001) Maxillo-facial virtual surgery from 3D CT images. Paper presented at the bioengineering science and supercomputing at CINECA report

  55. Binucci MM, Lamberti C, Gori R, Montagna L, Sarti A (2002) An integrated system for maxillo-facial surgery simulation. Paper presented at the CARS

  56. Koch RM, Gross MH, Carls FR, von Buren DF, Frankhauser G, Parish YIH (1996) Simulating facial surgery using finite element models. In: SIGGRAPH. ACM Press, pp 421–428

  57. Pan BB, Zhang GM, Xia JJ, Yuan P, Ip HHS, He QZ, Lee PKM, Chow B, Zhou XB (2016) Prediction of soft tissue deformations after CMF surgery with incremental kernel ridge regression. Comput Biol Med 75:1–9. doi:10.1016/j.compbiomed.2016.04.020

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pan B, Xia JJ, Yuan P, Gateno J, Ip HH, He Q, Lee PK, Chow B, Zhou X (2012) Incremental kernel ridge regression for the prediction of soft tissue deformations. Med Image Comput Comput Assist Interv 15(Pt 1):99–106

    PubMed  PubMed Central  Google Scholar 

  59. Kim H, Jurgens P, Nolte LP, Reyes M (2010) Anatomically-driven soft-tissue simulation strategy for cranio-maxillofacial surgery using facial muscle template model. Med Image Comput Comput Assist Interv 13(Pt 1):61–68

    PubMed  Google Scholar 

  60. Mollemans W, Schutyser F, Nadjmi N, Maes F, Suetens P (2007) Predicting soft tissue deformations for a maxillofacial surgery planning system: from computational strategies to a complete clinical validation. Med Image Anal 11(3):282–301

    Article  CAS  PubMed  Google Scholar 

  61. Kim D, Chang CM, Ho DC-Y, Zhang X, Shen S, Yuan P, Mai H, Zhang G, Zhou X, Gateno J, Liebschner MAK, Xia JJ (2016) Two-stage simulation method to improve facial soft tissue prediction accuracy for orthognathic surgery. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells WM (eds) Medical image computing and computer-assisted intervention—MICCAI 2016, lecture notes in computer science, Athens, Greece, October 17–21, 2016. Springer, pp 559–567

  62. Zhang X, Tang Z, Liebschner MA, Kim D, Shen S, Chang CM, Yuan P, Zhang G, Gateno J, Zhou X, Zhang SX, Xia JJ (2015) An eFace-template method for efficiently generating patient-specific anatomically-detailed facial soft tissue FE models for craniomaxillofacial surgery simulation. Ann Biomed Eng. doi:10.1007/s10439-015-1480-7

    Google Scholar 

  63. Zhang G, Xia JJ, Liebschner M, Zhang X, Kim D, Zhou X (2016) Improved Rubin-Bodner model for the prediction of soft tissue deformations. Med Eng Phys 38(11):1369–1375. doi:10.1016/j.medengphy.2016.09.008

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to thank Chien-Ming Chang, D.D.S., Yi-Fang Lo, D.D.S., Shunyao Shen D.D.S., M.S., Xiaoyan Zhang, Ph.D., Ken-Chung Chen, D.D.S., M.S., Zhen Tang, D.D.S., M.S., Ph.D., and Xiaobo Zhou, Ph.D., for their contributions on this project. The preliminary study of this manuscript was presented in part at \(7^{\mathrm{th}}\) International Conference on Medical Imaging and Augmented Reality (MIAR) in Bern, Switzerland on August 24–26, 2016.

Funding This study is funded in part by the United States National Institutes of Health/National Institute of Dental and Craniofacial Research (NIH/NIDCR) Grants (R01DE022676 and R01DE021863). Dr. Mai was sponsored by Scholar Award of Guangxi Education Department, Guangxi, China, and Dr. Ho was sponsored by Taipei Municipal Wan Fang Hospital Taipei, Taiwan (ROC), while working at the Surgical Planning Laboratory, Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, TX, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by our IRB [approval number: IRB(2)1011-0187x]. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Due to the fact that this study only utilized historical data that had been collected as a part of the medical records during the patient care, informed consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, P., Mai, H., Li, J. et al. Design, development and clinical validation of computer-aided surgical simulation system for streamlined orthognathic surgical planning. Int J CARS 12, 2129–2143 (2017). https://doi.org/10.1007/s11548-017-1585-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-017-1585-6

Keywords

Navigation