Skip to main content

Advertisement

Log in

Biaxial flexure strength and physicochemical characterization of a CAD/CAM lithium disilicate ceramic: effect of etching time, silane, and adhesive applications

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

To evaluate the effect of different acid etching time and bonding agent (silane and/or adhesive system) on biaxial flexural strength and physico-chemical properties of a lithium disilicate ceramic.

Material and methods

One hundred twenty ceramic discs were made and divided into 8 groups (n = 15) according to factors “etching time” (20 and 120 s) with hydrofluoric acid (HF) and “bonding agent” (C, no bonding agent; S, silane, A, adhesive; and SA, silane + adhesive). After surface treatment, a resin cement layer was applied to the surface and all specimens were subjected to biaxial flexural strength (BFS) test with treated surfaces loaded in tension (1 mm/min). The Weibull analyses and complementary analyses were also performed. Statistical analysis was done with 2-way ANOVA and the Tukey test (α = 0.05).

Results

ANOVA revealed that the factors “etching time” (p = 0.0003) and “bonding agent” (p = 0.007) were statistically significant. In the overall analysis, the HF120S group (272.02 ± 35.30A MPa) presented significantly higher BFS than that of HF120C (218.45 ± 17.15CD MPa) and HF20S (228.40 ± 37.83BCDMPa). On the other hand, the HF20A group (208.92 ± 31.16D MPa) had significantly lower BFS than HF120S (272.02 ± 35.30A), HF120A (254.42 ± 26.87ABC) and HF120SA (259.30 ± 36.55AB) groups (Tukey). The Weibull modulus (m) of all groups was significantly different from each other (p = 0.000).

Conclusions

Regardless of etching time, the application of silane alone is sufficient to increase the flexural strength of glass ceramic, eliminating the need for the application of adhesive systems. Moreover, if only silane or adhesive is applied, 120-s HF application should increase the flexural resistance of the lithium disilicate ceramic.

Clinical significance.

Applications of adhesive systems after silanization can be suppressed from the surface treatment protocol of glass ceramics, since it does not improve their mechanical strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Höland W, Rheinberger V, Apel CE (2007) Principles and phenomena of bioengineering with glass-ceramicsfor dental restoration. J Eur Ceram Soc 27:1521–1526. https://doi.org/10.1016/j.jeurceramsoc.2006.04.101

    Article  Google Scholar 

  2. Tysowsky GW (2009) The science behind lithium disilicate: a metal-free alternative. Dent Today 28:112–113

    PubMed  Google Scholar 

  3. Zhang Y, Kelly JR (2017) Dental ceramics for restoration and metal-veneering. Dent Clin North Am 61:797–819. https://doi.org/10.1016/j.cden.2017.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pieger S, Salman A, Bidra AS (2014) Clinical outcomes of lithium disilicate single crowns and partial fixed dental prostheses: a systematic review. J Prosthet Dent 112(1):22–30. https://doi.org/10.1016/j.prosdent.2014.01.005

    Article  PubMed  Google Scholar 

  5. Fasbinder DJ, Dennison JB, Heys D, Neiva G (2010) A clinical evaluation of chairside lithium disilicate CAD/CAM crowns. J Am Dent Assoc 141:10S-14S. https://doi.org/10.14219/jada.archive.2010.0355

    Article  PubMed  Google Scholar 

  6. Lise DP, Perdigão J, Ende Van A, Zidan O, Lopes GC (2015) Microshear bond strength of resin cements to lithium disilicate substrates as a function of surface preparation. Oper Dent 40(5):524–532. https://doi.org/10.2341/14-240-L

    Article  PubMed  Google Scholar 

  7. Li RWK, Chow TW, Matinlinna JP (2014) Ceramic dental biomaterials and CAD/CAM technology: state of the art. J Prosthodont Res 58(4):208–216. https://doi.org/10.1016/j.jpor.2014.07.003

    Article  PubMed  Google Scholar 

  8. Matthias K, Martin S, Stefan W (2012) Ten-year outcome of three-unit fixed dental prostheses made from monolithic lithium disilicate ceramic. J Am Dent Assoc 143:234–240. https://doi.org/10.14219/jada.archive.2012.0147

    Article  Google Scholar 

  9. Della Bona A, Kelly JR 2008. The clinical success of all-ceramic restorations. J Am Dent Assoc. 139 Suppl, 8S-13S. http://doi.org/https://doi.org/10.14219/jada.archive.2008.0361.

  10. Gehrt M, Wolfart S, Rafai N, Reich S, Edelhoff D (2013) Clinical results of lithium-disilicate crowns after up to 9 years of service. Clin Oral Investig 17(1):275–284. https://doi.org/10.1007/s00784-012-0700-x

    Article  PubMed  Google Scholar 

  11. Taskonak B, Sertgöz A (2006) Two-year clinical evaluation of lithia-disilicate-based all-ceramic crowns and fixed partial dentures. Dent Mater 22(11):1008–1013. https://doi.org/10.1016/j.dental.2005.11.028

    Article  PubMed  Google Scholar 

  12. Valenti M, Valenti A (2009) Retrospective survival analysis of 261 lithium disilicate crowns in a private general practice. Quintessence Int 40(7):573–579

    PubMed  Google Scholar 

  13. Fraga S, Valandro LF, Bottino MA, May LG (2015) Hard machining, glaze firing and hydrofluoric acid etching: do these procedures affect the flexural strength of a leucite glass–ceramic? Dent Mater 31:e132–e140. https://doi.org/10.1016/j.dental.2015.04.005

    Article  Google Scholar 

  14. Layton D, Walton T (2007) An up to 16-year prospective study of 304 porcelain veneers. Int J Prosthodont 20:389–396

    PubMed  Google Scholar 

  15. Beier US, Kapferer I, Burtscher D, Dumfahrt H (2012) Clinical performance of porcelain laminate veneers for up to 20 years. Int J Prosthodont 25:79–85. https://doi.org/10.1016/s0022-3913(12)60047-x

    Article  PubMed  Google Scholar 

  16. Beier US, Kapferer I, Dumfahrt H (2012) Clinical long-term evaluation and failure characteristics of 1,335 all-ceramic restorations. Int J Prosthodont 25:70–78. https://doi.org/10.1016/s0022-3913(12)60068-7

    Article  PubMed  Google Scholar 

  17. Yen T-W, Blachman RB, Baez RJ (1993) Effect of acid etching on the flexural strength of a feldspathic porcelain and a castable glass ceramic. J Prosthet Dent 70(3):224–233. https://doi.org/10.1016/0022-3913(93)90056-t

    Article  PubMed  Google Scholar 

  18. Peumans M, De Munck J, Fieuws S, Lambrechts P, Vanherle G, Van Meerbeek B (2004) A prospective ten-year clinical trial of porcelain veneers. J Adhes Dent 6:65–76. https://doi.org/10.2310/6130.2006.00019_1.x

    Article  PubMed  Google Scholar 

  19. Walls AW (1995) The use of adhesively retained all-porcelain veneers during the management of fractured and worn anterior teeth, part II: clinical results after 5 years of follow-up. Br Dent J 178(9):337–340. https://doi.org/10.1038/sj.bdj.4808759

    Article  PubMed  Google Scholar 

  20. Gresnigt MM, Kalk W, Ozcan M (2013) Clinical longevity of ceramic laminate veneers bonded to teeth with and without existing composite restorations up to 40 months. Clin Oral Investig 17:823–832. https://doi.org/10.1007/s00784-012-0790-5

    Article  PubMed  Google Scholar 

  21. Guess PC, Stappert CF (2008) Midterm results of a 5-year prospective clinical investigation of extended ceramic veneers. Dent Mater 24:804–813. https://doi.org/10.1016/j.dental.2007.09.009

    Article  PubMed  Google Scholar 

  22. Della Bona A, Borba M, Benetti P, Pecho O, Alessandretti R, Mosele J (2014) Adhesion to dental ceramics. Curr Oral Health Rep 1(4):232–238. https://doi.org/10.1007/s40496-014-0030-y

    Article  Google Scholar 

  23. Burke FJ, Fleming GJ, Nathanson D, Marquis PM (2002) Are adhesive technologies needed to support ceramics? An assessment of the current evidence. J Adhes Dent 4:7–22

    PubMed  Google Scholar 

  24. Lin WS, ErcolI C, Feng C, Morton D (2012) The effect of core material, veneering porcelain, and fabrication technique on the biaxial flexural strength and Weibull analysis of selected dental ceramics. J Prosthodont 21:353–362. https://doi.org/10.1111/j.1532-849X.2012.00845.x

    Article  PubMed  Google Scholar 

  25. Zhang Y, Sailer I, Lawn BR (2013) Fatigue of dental ceramics. J Dent 41:1135–1147. https://doi.org/10.1016/j.jdent.2013.10.007

    Article  PubMed  Google Scholar 

  26. Gonzaga CC, Okada CY, Cesar PF, Miranda WG Jr, Yoshimura HN (2009) Effect of processing induced particle alignment on the fracture toughness and fracture behavior of multiphase dental ceramics. Dent Mater 25:1293–1301. https://doi.org/10.1016/j.dental.2009.03.013

    Article  PubMed  Google Scholar 

  27. Posritong S, Borges ALS, Chu T-MG, Eckert GJ, Bottino MA, Bottino MC (2013) The impact of hydrofluoric acid etching followed by unfilled resin on the biaxial strength of a glass-ceramic. Dent Mater 29:e281–e290. https://doi.org/10.1016/j.dental.2013.08.210

    Article  PubMed  Google Scholar 

  28. Christensen GJ, Christensen RP (1991) Clinical observations of porcelain veneers: a three-year report. J Esthet Restor Dent 3(5):174–179. https://doi.org/10.1111/j.1708-8240.1991.tb00994.x.

    Article  Google Scholar 

  29. Zogheib LV, Della Bona A, Kimpara ET, Mccabe JF (2011) Effect of hydrofluoric acid etching duration on the roughness and flexural strength of a lithium disilicate-based glass ceramic. Braz Dent J 22:45–50. https://doi.org/10.1590/S0103-64402011000100008

    Article  PubMed  Google Scholar 

  30. Magne P, Kwon KR, Besler UC, Hodges JS, Douglas WH (1999) Crack propensity of porcelain laminate veneers – a simulated operatory evaluation. J Prosthet Dent 81:327–334. https://doi.org/10.1016/s0022-3913(99)70277-5

    Article  PubMed  Google Scholar 

  31. Hooshmand T, ParvizI S, Keshvad A (2008) Effect of surface acid etching on the biaxial flexural strength of two hot-pressed glass ceramics. J Prosthodont 17:415–419. https://doi.org/10.1111/j.1532-849X.2008.00319.x

    Article  PubMed  Google Scholar 

  32. Xiaoping L, Dongfeng R, Silikas N (2014) Effect of etching time and resin bond on the flexural strength of IPS e.max Press glass ceramic. Dent Mater 30:e330–e336. https://doi.org/10.1016/j.dental.2014.08.373

    Article  PubMed  Google Scholar 

  33. Prochnow C, Venturini AB, Grasel R, Bottino MC, Valandro LF (2016) Effect of etching with distinct hydrofluoric acid concentrations on the flexural strength of a lithium disilicate-based glass ceramic. J Biomed Mater Res B Appl Biomater 105(4):885–891. https://doi.org/10.1002/jbm.b.33619

    Article  PubMed  Google Scholar 

  34. Della Bona A (2005) Characterizing ceramics and the interfacial adhesion to resin: II- the relationship of surface treatment, bond strength, interfacial toughness and fractography. J Appl Oral Sci 13(2):101–109. https://doi.org/10.1590/s1678-77572005000200002

    Article  PubMed  Google Scholar 

  35. Passos SP, TorrealbA Y, Major P, Linke B, Flores-Mir C, Nychka JA (2014) In vitro wear behavior of zirconia opposing enamel: a systematic review. J Prosthodont 23:593–601. https://doi.org/10.1111/jopr.12167

    Article  PubMed  Google Scholar 

  36. Kang SH, Chang J, Son HH (2013) Flexural strength and microstructure of two lithium disilicate glass ceramics for CAD/CAM restoration in the dental clinic. Restor Dent Endod 38(3):134–140. https://doi.org/10.5395/rde.2013.38.3.134

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xu Y, Han J, Lin H, An L (2015) Comparative study of flexural strength test methods on CAD/CAM Y-TZP dental ceramics. Regen Biomater 2(4):239–244. https://doi.org/10.1093/rb/rbv020

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zeng K, Oden A, Rowcliffe D (1996) Flexure tests on dental ceramics. Int J Prosthodont 9:434–439

    PubMed  Google Scholar 

  39. Thompson J, Anusavice K (1994) Effect of surface etching on the flexural strength and fracture toughness of Dicor disks containing controlled flaws. J Dent Res 73:505–510. https://doi.org/10.1177/00220345940730020401

    Article  PubMed  Google Scholar 

  40. Chuang TJ, Fuller ER (1992) Extended Charles-Hillig theory for stress-corrosion cracking of a glass. J Am Ceram Soc 75:540–545. https://doi.org/10.1111/j.1151-2916.1992.tb07839.x

    Article  Google Scholar 

  41. Lawn BR, Jakus K, Gonzalez AC (1985) Sharp vs. blunt crack hypothesis in the strength of a glass—a critical study using indentation flaws. J Am Ceram Soc 68:25–34. https://doi.org/10.1111/j.1151-2916.1985.tb15246.x

    Article  Google Scholar 

  42. Murillo-Gómez F, Palma-Dibb RG, De Goes MF (2018) Effect of acid etching on tridimensional microstructure of etchable CAD/CAM materials. Dent Mater 34:944–955. https://doi.org/10.1016/j.dental.2018.03.013

    Article  PubMed  Google Scholar 

  43. Quinn JB, Quinn GD (2010) A practical and systematic review of Weibull statistics for reporting strengths of dental materials. Dent Mater 26(2):135–147. https://doi.org/10.1016/j.dental.2009.09.006

    Article  PubMed  Google Scholar 

  44. De Carvalho IHG, Da Silva NR, Vila-Nova TEL, Almeida LFD, Veríssimo AH, Melo RMM, Zhang Y, Souza ROA (2022) Effect of finishing/polishing techniques and aging on topography, C. albicans adherence, and flexural strength of ultra-translucent zirconia: an in situ study. Clin Oral Investig 26(1):889–900. https://doi.org/10.1007/s00784-021-04068-3

    Article  PubMed  Google Scholar 

  45. Vila-Nova TEL, Carvalho IGH, Moura DMD, Batista AUD, Zhang Y, Paskocimas CA, Bottino MA, Souza ROA (2020) Effect of finishing/polishing techniques and low temperature degradation on the surface topography, phase transformation and flexural strength of ultra-translucent ZrO2 ceramic. Dent Mater 36:e126–e139. https://doi.org/10.1016/j.dental.2020.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lung CY, Botelho MG, Heinonen M, Matinlinna JP (2012) Resin zircônia bonding promotion with some novel coupling agentes. Dent Mater 28:863–872. https://doi.org/10.1016/j.dental.2012.04.023

    Article  PubMed  Google Scholar 

  47. Murillo-Gómez F, Wanderley RB, De Goes MF (2019) Impact of silane-containing universal adhesive on the biaxial flexural strength of a resin cement/glass-ceramic system. Oper Dent 44(2):200–209. https://doi.org/10.2341/17-356-L

    Article  PubMed  Google Scholar 

  48. Marquis PM (1992) The influence of cements on the mechanical performance of dental ceramics. Bioceramics 5:317–324

    Google Scholar 

  49. Fleming GJ, Maguire FR, Bhamra G, Burke FM, Marquis PM (2006) The strengthening mechanism of resin cements on porcelain surfaces. J Dent Res 85(3):272–276. https://doi.org/10.1177/154405910608500313

    Article  PubMed  Google Scholar 

  50. Fabes BD, Uhlmann DR (1990) Strengthening of glass by sol-gel coatings. J Am Ceram Soc 73:978–988. https://doi.org/10.1111/j.1151-2916.1990.tb05146.x

    Article  Google Scholar 

  51. Schittly E, Bouter D, Le Goff S, Degrange M, Attal JP (2010) Compatibility of five self-etching adhesive systems with two resin luting cements. J Adhes Dent 12(2):137–142. https://doi.org/10.3290/j.jad.a17546

    Article  PubMed  Google Scholar 

  52. Chaves CAL, Melo RM, Passos SP, Camargo FP, Bottino MA, Balducci I (2009) Bond strength durability of self-etching adhesives and resin cements to detin. J Appl Oral Sci 17(3):155–160. https://doi.org/10.1590/S1678-77572009000300005

    Article  PubMed  PubMed Central  Google Scholar 

  53. Passos SP, Valandro LF, Amaral R, Ozcan M, Bottino MA, Kimpara ET (2008) Does adhesive resin application contribute to resin bond durability on etched and silanized feldspathic ceramic? J Adhes Dent 10(6):455–460. https://doi.org/10.3290/j.jad.a14148

    Article  PubMed  Google Scholar 

  54. Reich SM, Wichmann M, Frankenberger R, Zajc D (2005) Effect of surface treatment on the shear bond strength of three resin cements to a machinable feldspatic ceramic. J Biomed Mater Res B Appl Biomater 74(2):740–746. https://doi.org/10.1002/jbm.b.30292

    Article  PubMed  Google Scholar 

  55. Ortiz AL, Borrero-Lopez O, Guiberteau F, Zhang Y (2019) Microstructural development during heat treatment of a commercially available dental-grade lithium disilicate glass-ceramic. Dent Mater 35:697–708. https://doi.org/10.1016/j.dental.2019.02.011

    Article  PubMed  PubMed Central  Google Scholar 

  56. Willard A, Chu TMG (2018) The science and application of IPS e.max dental ceramic. Kaohsiung J Med Sci 34:238–242. https://doi.org/10.1016/j.kjms.2018.01.012

    Article  PubMed  Google Scholar 

  57. Zhang Y, Lee JJW, Srikanth R, Lawn BR (2013) Edge chipping and flexural resistance of monolithic ceramics. Dent Mater 29:1201–1208. https://doi.org/10.1016/j.dental.2013.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  58. Romanini-Junior JC, Kumagai RY, Ortega LF, Rodrigues JA, Cassoni A, Hirata R, Reis AF (2018) Adhesive/silane application effects on bond strength durability to a lithium disilicate ceramic. J Esthet Restor Dent 30(4):346–351. https://doi.org/10.1111/jerd.12387

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Odontomega (São Paulo, Brazil) for support with ceramic (Rosetta SM) and FGM (Joinville, SC, Brazil) for support with the other materials used in this study.

Funding

This study was funded in part by the Coordination for the Development of Higher Education Personnel—Brazil (CAPES)—Grant Code 001. YZ would like to thank the United States National Institutes of Health/National Institute of Dental and Craniofacial Research for their support (grants No. R01 DE026772 and R01 DE026279).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Othávio de Assunção e Souza.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent statement

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, S.E.G., de Araújo, G.M., Souza, K.B. et al. Biaxial flexure strength and physicochemical characterization of a CAD/CAM lithium disilicate ceramic: effect of etching time, silane, and adhesive applications. Clin Oral Invest 26, 6753–6763 (2022). https://doi.org/10.1007/s00784-022-04635-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-022-04635-2

Keywords

Navigation