Skip to main content

Advertisement

Log in

Cytocompatibility and bioactivity of calcium hydroxide-containing nanofiber scaffolds loaded with fibronectin for dentin tissue engineering

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The aim of this study was to characterize polycaprolactone-based nanofiber scaffolds (PCL) incorporated with calcium hydroxide (CH) and evaluate their bioactivity on human dental pulp cells (HDPCs) when loaded with fibronectin (FN).

Materials and methods

CH (0.1%; 0.2%; 0.4% w/v; or 0%) was incorporated into PCL (10% w/v) scaffolds prepared by electrospinning. Morphology and composition were characterized using SEM/EDS. HDPCs were seeded on the scaffolds and evaluated for viability (alamarBlue; Live/Dead), and adhesion/spreading (F-actin). Next, scaffolds containing 0.4% CH were loaded with FN (20 µg/mL). HDPCs were evaluated for viability, adhesion/spreading, migration (Trans-well), gene expression (RT-qPCR), alkaline phosphatase activity (ALP), and mineralization nodules (Alizarin Red). Data were submitted to ANOVA and post-hoc tests (α = 5%).

Results

Nanofibers with larger diameter were seen as CH concentration increased, while there was no effect on interfibrillar spaces. An increase in cell viability was seen for 0.4% CH, in all periods. Incorporation of CH and FN into the scaffolds increased cellular migration, spread, and viability, all intensified when CH and FN were combined. ALPL and DSPP expression, and ALP activity were not affected by CH and FN. COL1A1 was downregulated in all groups, while DMP1 was upregulated in the presence of CH, with no differences for the groups loaded with FN. CH increased the formation of mineralized matrix, which was not influenced by FN.

Conclusions

In conclusion, the incorporation of CH enhanced the odontogenic potential of HDPCs, irrespective of the presence of FN. The PCL + 0.4% CH formulation may be a useful strategy for use in dentin tissue engineering.

Clinical relevance

A change in the form of presentation of calcium hydroxide-based materials used for direct pulp capping can increase biocompatibility and prolong the vitality of dental pulp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ferracane JL, Cooper PR, Smith AJ (2010) Can interaction of materials with the dentin-pulp complex contribute to dentin regeneration? Odontology 98(1):2–14. https://doi.org/10.1007/s10266-009-0116-5

    Article  PubMed  Google Scholar 

  2. Ruch JV, Lesot H, Bègue-Kirn C (1995) Odontoblast differentiation. Int J Dev Biol 39(1):51–68

    PubMed  Google Scholar 

  3. de Souza Costa CA, Teixeira HM, Lopes do Nascimento AB, Hebling J, (2007) Biocompatibility of resin-based dental materials applied as liners in deep cavities prepared in human teeth. J Biomed Mater Res B Appl Biomater 81(1):175–184. https://doi.org/10.1002/jbm.b.30651

    Article  PubMed  Google Scholar 

  4. Graham L, Cooper PR, Cassidy N, Nor JE, Sloan AJ, Smith AJ (2006) The effect of calcium hydroxide on solubilisation of bio-active dentine matrix components. Biomaterials 27(14):2865–2873. https://doi.org/10.1016/j.biomaterials.2005.12.020

    Article  PubMed  Google Scholar 

  5. Aeinehchi M, Eslami B, Ghanbariha M, Saffar AS (2003) Mineral trioxide aggregate (MTA) and calcium hydroxide as pulp-capping agents in human teeth: a preliminary report. Int Endod J 36(3):225–231. https://doi.org/10.1046/j.1365-2591.2003.00652.x

    Article  PubMed  Google Scholar 

  6. de Souza Costa CA, Hebling J, Scheffel DL, Soares DG, Basso FG, Ribeiro AP (2014) Methods to evaluate and strategies to improve the biocompatibility of dental materials and operative techniques. Dent Mater 30(7):769–784. https://doi.org/10.1016/j.dental.2014.04.010

    Article  PubMed  Google Scholar 

  7. de Souza Costa CA, Duarte PT, de Souza PP, Giro EM, Hebling J (2008) Cytotoxic effects and pulpal response caused by a mineral trioxide aggregate formulation and calcium hydroxide. Am J Dent 21(4):255–261

    PubMed  Google Scholar 

  8. Ma PX (2008) Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 60(2):184–198. https://doi.org/10.1016/j.addr.2007.08.041

    Article  PubMed  Google Scholar 

  9. Galler KM, Eidt A, Schmalz G (2014) Cell-free approaches for dental pulp tissue engineering. J Endod 40(4 Suppl):41–45. https://doi.org/10.1016/j.joen.2014.01.014

    Article  Google Scholar 

  10. Jazayeri HE, Lee SM, Kuhn L, Fahimipour F, Tahriri M, Tayebi L (2020) Polymeric scaffolds for dental pulp tissue engineering: a review. Dent Mater 36(2):e47–e58. https://doi.org/10.1016/j.dental.2019.11.005

    Article  PubMed  Google Scholar 

  11. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002

    Article  Google Scholar 

  12. Dwivedi R, Kumar S, Pandey R, Mahajan A, Nandana D, Katti DS, Mehrotra D (2020) Polycaprolactone as biomaterial for bone scaffolds: Review of literature. J Oral Biol Craniofac Res 10(1):381–388. https://doi.org/10.1016/j.jobcr.2019.10.003

    Article  PubMed  Google Scholar 

  13. Pham QP, Sharma U, Mikos AG (2006) Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromol 7(10):2796–2805. https://doi.org/10.1021/bm060680j

    Article  Google Scholar 

  14. Bottino MC, Yassen GH, Platt JA, Labban N, Windsor LJ, Spolnik KJ, Bressiani AH (2013) A novel three-dimensional scaffold for regenerative endodontics: materials and biological characterizations. J Tissue Eng Regen Med 9(11):116–123. https://doi.org/10.1002/term.1712

    Article  Google Scholar 

  15. Liu H, Peng H, Wu Y, Zhang C, Cai Y, Xu G, Li Q, Chen X, Ji J, Zhang Y, OuYang HW (2013) The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Biomaterials 34(18):4404–1447. https://doi.org/10.1016/j.biomaterials.2013.02.048

    Article  PubMed  Google Scholar 

  16. Wang P, Zhao L, Chen W, Liu X, Weir MD, Xu HH (2014) Stem cells and calcium phosphate cement scaffolds for bone regeneration. J Dent Res 93(7):618–625. https://doi.org/10.1177/0022034514534689

    Article  PubMed  PubMed Central  Google Scholar 

  17. Roy P, Sailaja RR (2015) Chitosan-nanohydroxyapatite composites: mechanical, thermal and bio-compatibility studies. Int J Biol Macromol 73:170–181. https://doi.org/10.1016/j.ijbiomac.2014.11.023

    Article  PubMed  Google Scholar 

  18. Soares DG, Rosseto HL, Basso FG, Scheffel DS, Hebling J, Costa CA (2016) Chitosan-collagen biomembrane embedded with calcium-aluminate enhances dentinogenic potential of pulp cells. Braz Oral Res 30(1):e54. https://doi.org/10.1590/1807-3107BOR-2016.vol30.0054

    Article  PubMed  Google Scholar 

  19. Soares DG, Rosseto HL, Scheffel DS, Basso FG, Huck C, Hebling J, de Souza Costa CA (2017) Odontogenic differentiation potential of human dental pulp cells cultured on a calcium-aluminate enriched chitosan-collagen scaffold. Clin Oral Investig 21(9):2827–2839. https://doi.org/10.1007/s00784-017-2085-3

    Article  PubMed  Google Scholar 

  20. Okabe T, Sakamoto M, Takeuchi H, Mtsushima K (2006) Effects of pH on mineralization ability of human dental pulp cells. J Endod 32(3):198–201. https://doi.org/10.1016/j.joen.2005.10.041

    Article  PubMed  Google Scholar 

  21. Yoshiba K, Yoshiba N, Nakamura H, Iwaku M, Ozawa H (1996) Immunolocalization of fibronectin during reparative dentinogenesis in human teeth after pulp capping with calcium hydroxide. J Dent Res 75(8):1590–1597. https://doi.org/10.1177/00220345960750081101

    Article  PubMed  Google Scholar 

  22. Lawson CD, Burridge K (2014) The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases 5:e27958. https://doi.org/10.4161/sgtp.27958

    Article  PubMed  PubMed Central  Google Scholar 

  23. Howard C, Murray PE, Namerow KN (2010) Dental pulp stem cell migration. J Endod 36(12):1963–1966. https://doi.org/10.1016/j.joen.2010.08.046

    Article  PubMed  Google Scholar 

  24. Chatakun P, Núñez-Toldrà R, Díaz López EJ, Gil-Recio C, Martínez-Sarrà E, Hernández-Alfaro F, Ferrés-Padró E, Giner-Tarrida L, Atari M (2014) The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature. Cell Mol Life Sci 71(1):113–142. https://doi.org/10.1007/s00018-013-1326-0

    Article  PubMed  Google Scholar 

  25. Leite ML, Usberti FR, Ortecho-Zuta U, Bordini EAF, Soares DG, Hebling J, de Souza Costa CA (2019) Synthesis and characterization of nanofibers scaffolds and their biological effects on human pulp cells. Rodyb 1:9–15

    Google Scholar 

  26. Stefani I, Cooper-White JJ (2016) Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications. Acta Biomater 36:231–240. https://doi.org/10.1016/j.actbio.2016.03.013

    Article  PubMed  Google Scholar 

  27. Soares DG, Basso FG, Hebling J, de Souza Costa CA (2015) Immediate and late analysis of dental pulp stem cells viability after indirect exposition to alternative in-office bleaching strategies. Clin Oral Invest 19(5):1013–1020. https://doi.org/10.1007/s00784-014-1321-3

    Article  Google Scholar 

  28. Leite ML, Soares DG, Anovazzi G, Mendes Soares IP, Hebling J, de Souza Costa CA (2020) Development of fibronectin-loaded nanofiber scaffolds for guided pulp tissue regeneration. J Biomed Mater Res B Appl Biomater 31:e34785. https://doi.org/10.1002/jbm.b.34785

    Article  Google Scholar 

  29. Leite MLAS, Soares DG, Basso FG, Hebling J, de Souza CC (2017) Biostimulatory effects of simvastatin on MDPC-23 odontoblast-like cells. Braz Oral Res 31:e104. https://doi.org/10.1590/1807-3107BOR-2017.vol31.0104

    Article  PubMed  Google Scholar 

  30. Wang J, Ma H, Jin X, Hu J, Liu X, Ni L, Ma PX (2011) The effect of scaffold architecture on odontogenic differentiation of human dental pulp stem cells. Biomaterials 32(31):7822–7830. https://doi.org/10.1016/j.biomaterials.2011.04.034

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gupte MJ, Ma PX (2012) Nanofibrous scaffolds for dental and craniofacial applications. J Dent Res 91(3):227–234. https://doi.org/10.1177/0022034511417441

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kostopoulos V, Kotrotsos A, Fouriki K, Kalarakis A, Portan D (2020) Fabrication and characterization of polyetherimide electrospun scaffolds modified with graphene nano-platelets and hydroxyapatite nano-particles. Int J Mol Sci 21(2):583. https://doi.org/10.3390/ijms21020583

    Article  PubMed Central  Google Scholar 

  33. Farhadian N, Godiny M, Moradi S, Hemati Azandaryani A, Shahlaei M (2018) Chitosan/gelatin as a new nano-carrier system for calcium hydroxide delivery in endodontic applications: development, characterization and process optimization. Mater Sci Eng C Mater Biol Appl 92:540–546. https://doi.org/10.1016/j.msec.2018.07.002

    Article  PubMed  Google Scholar 

  34. Soares DG, Bordini EAF, Cassiano FB, Bronze-Uhle ES, Pacheco LE, Zabeo G, Hebling J, Lisboa-Filho PN, Bottino MC, de Souza Costa CA (2020) Characterization of novel calcium hydroxide-mediated highly porous chitosan-calcium scaffolds for potential application in dentin tissue engineering. J Biomed Mater Res B Appl Biomater 108(6):2546–2559. https://doi.org/10.1002/jbm.b.34586

    Article  PubMed  Google Scholar 

  35. Johannsen K, Rademacher S (1999) Modelling the kinetics of calcium hydroxide dissolution in water. Acta hydrochim hydrobiol 27:72–78. https://doi.org/10.1002/(SICI)1521-401X(199902)27:2%3c72::AID-AHEH72%3e3.0.CO;2-H

    Article  Google Scholar 

  36. Liang D, Hsiao BS, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 59(14):1392–1412. https://doi.org/10.1016/j.addr.2007.04.021

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gorodzha SN, Muslimov AR, Syromotina DS, Timin AS, Tcvetkov NY, Lepik KV, Petrova AV, Surmeneva MA, Gorin DA, Sukhorukov GB, Surmenev RA (2017) A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering. Colloids Surf B Biointerfaces 160:48–59. https://doi.org/10.1016/j.colsurfb.2017.09.004

    Article  PubMed  Google Scholar 

  38. Hebling J, Giro EM, Costa CA (1999) Biocompatibility of an adhesive system applied to exposed human dental pulp. J Endod 25(10):676–682. https://doi.org/10.1016/s0099-2399(99)80354-9

    Article  PubMed  Google Scholar 

  39. Grover C, Shetty N (2014) Evaluation of calcium ion release and change in pH on combining calcium hydroxide with different vehicles. Contemp Clin Dent 5(4):434–439. https://doi.org/10.4103/0976-237X.142803

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hirose Y, Yamaguchi M, Kawabata S, Murakami M, Nakashima M, Gotoh M, Yamamoto T (2016) Effects of extracellular pH on dental pulp cells in vitro. J Endod 42(5):735–741. https://doi.org/10.1016/j.joen.2016.01.019

    Article  PubMed  Google Scholar 

  41. Sciaky I, Pisanti S (1960) Localization of calcium placed over amputated pulps in dogs’ teeth. J Dent Res 39:1128–1132. https://doi.org/10.1177/00220345600390060601

    Article  PubMed  Google Scholar 

  42. Kanaya S, Xiao B, Sakisaka Y, Suto M, Maruyama K, Saito M, Nemoto E (2018) Extracellular calcium increases fibroblast growth factor 2 gene expression via extracellular signal-regulated kinase 1/2 and protein kinase A signaling in mouse dental papilla cells. J Appl Oral Sci 14(26):e20170231. https://doi.org/10.1590/1678-7757-2017-0231

    Article  Google Scholar 

  43. Kim JJ, Bae WJ, Kim JM, Kim JJ, Lee EJ, Kim HW, Kim EC (2014) Mineralized polycaprolactone nanofibrous matrix for odontogenesis of human dental pulp cells. J Biomater Appl 28(7):1069–1078. https://doi.org/10.1177/0885328213495903

    Article  PubMed  Google Scholar 

  44. Jung GY, Park YJ, Han JS (2010) Effects of HA released calcium ion on osteoblast differentiation. J Mater Sci Mater Med 21(5):1649–1654. https://doi.org/10.1007/s10856-010-4011-y

    Article  PubMed  Google Scholar 

  45. Khoshniat S, Bourgine A, Julien M, Petit M, Pilet P, Rouillon T, Masson M, Gatius M, Weiss P, Guicheux J, Beck L (2011) Phosphate-dependent stimulation of MGP and OPN expression in osteoblasts via the ERK1/2 pathway is modulated by calcium. Bone 48(4):894–902. https://doi.org/10.1016/j.bone.2010.12.002

    Article  PubMed  Google Scholar 

  46. An S, Gao Y, Ling J, Wei X, Xiao Y (2012) Calcium ions promote osteogenic differentiation and mineralization of human dental pulp cells: implications for pulp capping materials. J Mater Sci Mater Med 23(3):789–795. https://doi.org/10.1007/s10856-011-4531-0

    Article  PubMed  Google Scholar 

  47. Apáti Á, Berecz T, Sarkadi B (2016) Calcium signaling in human pluripotent stem cells. Cell Calcium 59(2–3):117–123. https://doi.org/10.1016/j.ceca.2016.01.005

    Article  PubMed  Google Scholar 

  48. Han B, Wang X, Gao X, Liu J, Liang F, Qu X, Yang Z (2011) Synthesis and characterization of biodegradable microcapsules for the controlled delivery of calcium hydroxide. J Biomed Mater Res B Appl Biomater 99B(1):120–126. https://doi.org/10.1002/jbm.b.31878

    Article  Google Scholar 

  49. Takita T, Hayashi M, Takeichi O, Ogiso B, Suzuki N, Otsuka K, Ito K (2006) Effect of mineral trioxide aggregate on proliferation of cultured human dental pulp cells. Int Endod J 39(5):415–422. https://doi.org/10.1111/j.1365-2591.2006.01097.x

    Article  PubMed  Google Scholar 

  50. Wang X, Jong G, Lin LM, Shimizu E (2013) EphB-EphrinB interaction controls odontogenic/osteogenic differentiation with calcium hydroxide. J Endod 39(10):1256–1260. https://doi.org/10.1016/j.joen.2013.06.016

    Article  PubMed  Google Scholar 

  51. Mizuno M, Banzai Y (2008) Calcium ion release from calcium hydroxide stimulated fibronectin gene expression in dental pulp cells and the differentiation of dental pulp cells to mineralized tissue forming cells by fibronectin. Int Endod J 41(11):933–938. https://doi.org/10.1111/j.1365-2591.2008.01420.x

    Article  PubMed  Google Scholar 

  52. Asghari Sana F, Çapkın Yurtsever M, Kaynak Bayrak G, Tunçay EÖ, Kiremitçi AS, Gümüşderelioğlu M (2017) Spreading, proliferation and differentiation of human dental pulp stem cells on chitosan scaffolds immobilized with RGD or fibronectin. Cytotechnology 69(4):617–630. https://doi.org/10.1007/s10616-017-0072-9

    Article  PubMed  PubMed Central  Google Scholar 

  53. Martinez EF, Silva LAH, Furuse C, Araújo NS, Araújo VC (2009) Dentin matrix protein 1 (DMP1) expression in developing human teeth. Braz Dent J 20(5):365–369. https://doi.org/10.1590/s0103-64402009000500002

    Article  PubMed  Google Scholar 

  54. Omer A, Al-Sharabi N, Qiu Y, Xue Y, Li Y, Fujio M, Mustafa K, Xing Z (2020) Biological responses of dental pulp cells to surfaces modified by collagen 1 and fibronectin. J Biomed Mater Res Part A 108(6):1369–1379. https://doi.org/10.1002/jbm.a.36908

    Article  Google Scholar 

  55. Yeo A, Rai B, Sju E, Cheong JJ, Teoh SH (2008) The degradation profile of novel, bioresorbable PCL-TCP scaffolds: an in vitro and in vivo study. J Biomed Mater Res A 84(1):208–218. https://doi.org/10.1002/jbm.a.31454

    Article  PubMed  Google Scholar 

Download references

Funding

The work was supported by financial support from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (grant 001), the Fundação de Amparo à Pesquisa do Estado de São Paulo (grants 2019/11192–4 and 2019/16473–1) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant 303391/2019–7).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Caroline Ansemi, Igor Paulino Mendes Soares, Maria Luísa Leite, and Fernanda Ali Kitagawa. Founding acquisition, resources, and supervision were performed by Carlos Alberto de Souza Costa and Josimeri Hebling. The first draft of the manuscript was written by Caroline Anselmi and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Josimeri Hebling.

Ethics declarations

Ethical approval

The study approval was obtained from the ethics committee of School of Dentistry of Araraquara (CAAE: 18119319.9.0000.5416).

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 934 KB)

Supplementary file2 (XLSX 59 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anselmi, C., Mendes Soares, I.P., Leite, M.L. et al. Cytocompatibility and bioactivity of calcium hydroxide-containing nanofiber scaffolds loaded with fibronectin for dentin tissue engineering. Clin Oral Invest 26, 4031–4047 (2022). https://doi.org/10.1007/s00784-022-04372-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-022-04372-6

Keywords

Navigation